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ABSTRACT OF THE DISSERTATION

A PerturbatiCor Theory of the Heisenberg Antiferromagnet

by

Donald Lynd Bullock

University of California, Los Angeles, 1963

Assistant Professor David I. Paul, Chairman

The determination of some physical parameters of the

ground state for the Heisenberg antiferromagnet is con-

sidered. This problem has been completely solved hereto-

fore only in the cases of the energy and short range order

parameters for the linear chain with spin one-half. In

this dissertation, the problem of more general lattices

and of arbitrary spin is considered, and the long range

order parameter is treated in addition. The results are

reported in terms of series expansions generated by means

of a modified Rayleigh-Schrodinger perturbation theory,

which is proposed and developed in this dissertation, The

modification amounts to a process whereby the definition

of the zero order Hamiltonian is changed through the pre-

diction and inclusion of certain infinite classes of terms,

whose first members appear in the original perturbation

series. The final zero order Hamiltonian obtained is the

1
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Ising model. Explicit expressions for the ground state

parameters are given through fourth order for the linear

chain, plane quadratic, and simple cubic lattices with

arbitrary spin. The calculation is carried through to de-

termine the energy series through six orders also for the

linear chain with spin one-half. A comparison with experi-

mental determinations of the long range order in real anti-

ferromagnets is made. In addition, the problem of the first

excited states is considered. A perturbation calculation

similar to that performed for the ground state is carried

out for the partition function of the Heisenberg antiferro-

magnet. The low temperature terms of this expansion are

shown to be related to the energies of the ground state and

first excited states. The calculation of the first excited

state energies is carried out to second order. A complete

analysis of the relationship of this perturbation method

for the ground state and first excited states with the spin

wave treatment of the same states is carried out.



I. INTRODUCTION

This dissertation concerns some physical properties

of the ground state of the Heisenberg antiferromagnet. The

approach is one of developing approximate series represen-

tations for various physical parameters by means of a mod-

ified Rayleigh-Schrodinger perturbation theory.

For classical and semi-classical treatments of anti-

ferromagnetism, the problem of the ground state has been

largely ignored, and the classical antiferromagnetic ground

state, or Neel state, has been substituted for the true

ground state. Interest in the true ground state remains,

however, because the nature of the problem is such that

its solution lies in the direction of an exact solution for

the entire temperature range. Furthermore, there is the

question of just how much similarity there is between the

physical characteristics of the true ground state and the

often substituted Neel state.

In Chapter II, the Heisenberg model is discussed, with

emphasis on the problems inherent in treatments of the

antiferromagnetic lowest energy eigenstateo Chapter III

involves the derivation of an effective Hamiltonian, which

is subsequently used in a modified perturbation theory.

This modified perturbation theory is then proposed. The

3



modification amounts to a process whereby the definition

of the zero order Hamiltonian is changed through the pre-

diction and inclusion of certain infinite classes of terms

whose first members appear in the original perturbation

series. The final zero order !Laniltonian obtained in

Chapter III is the Ising model. Perturbation series are

then reported through the fourth order for the energy,

short range, and long range order parameters for typical

lattices of one, two, and three dimensions and arbitrary

spin. Yn addition, an analysis of the relationship of

these perturbation corrections to the corrections gener-

ated by the spin wave theory is carried out. In Chapter

IV, the same treatment is applied to the first excited

states of the Heisenberg antiferromagnet, along with a

subsequent analysis of its relationship to the spin wave

treatment of the same states.

The importance of this particular quantum mechanical

treatment is that it is a new treatment of the Heisenberg

antiferromagnet at low temperatures. Further, this new

method is analyzed and then compared with the standard

quantum mechanical approximation technique, i.e., the

spin wave theory, thus giving additional insight into the

problem.



II. THE HEISENBERG MODEL AND THE

GROUND STATE PROBLEM

A. Discussion of the Model

Neel 1 was the first to propose, and extensively inves-

tigate, the antiferromagnetic state. The basis for his

treatment of this state is the model Hamiltonian introduced
2

by Heisenberg in his first paper on the theory of ferro-

magnetism. This model continues to be the most common

starting point for treatments of cooperative magnetic

phenomena in both ferro- and antiferromagnetism, as well

as in the intermediate case of ferrimagnetism0
3

The Heisenberg model is useful in that it seems to

be sufficiently representative of the physics of coopera-

tive magnetism to predict with some consistency3 the re-

sults of experiment. In spite of this success, however,

there remain important theoretical problems with regard

to the derivation and interpretation of the model. There

is always the need to derive the model unambiguously from

the full Hamiltonian expressed in terms of electron and

nuclear coordinates, or to show that something quite like
4

it exists. Such a derivation would show clearly what

constitute the limitations and omissions of the model.5

There is also the need for the complete mathematical

5
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solution of the model itself, i.e., determination of the

eigenvalue spectrum and degeneracy scheme. The emphasis

in this dissertation is with regard to a problem which

lies in the latter area,

Complete descriptions of the eigenvalue spectrum and

degeneracy scheme for the Heisenberg model do not exist,

except for the treatment of the spin one-half coupled

linear chain by Betheo Even for that case, determina-

tion of the eigenvalue spectrum and degeneracy is given

only in principle. The set of coupled transcendental

equations which result has been solved for the energy of

the antiferromagnetic ground state' and of the antiferro-

magnetic first excited states,8 as well as for some low-

lying ferromagnetic states.°6 The great bulk of states

which contribute to the thermodynamical properties at

finite temperatures remains, however, uninvestigated.

Progress with exact solutions of even the Ising model, 9

which is a considerably simplified abbreviation of the

Heisenberg model, has so far failed of any exact three

dimensional treatment. The present effort is directed

toward the problem of the antiferromagnetic ground state

for general spin and typical one, two, and three dimen-

sional lattices from a perturbation theoretic point of

view.

The mathematical statement of the Heisenberg model

incorporating the nearest neighbor approximation is,



H=-2J E S (1)
<jk> J k-

where J is the exchange integral, and the sum is carried

out over the scalar product of all nearest neighbor pairs

of spin angular momentum operators associated with a given

lattice structure. Eq. (1) has both a classical and a

quantum mechanical interpretation. The determinations of

the lowest energy state when S. and Sk are considered to

be ordinary vectors, regardless of whether J is less than

(antiferromagnetism) or greater than zero (ferromagnetism),

is a trivial problem. For J > 0, all scalar products must

be maximized, giving rise to a ground state configuration

of perfect alignment which is fully determined except for

a directional degeneracy arising from the complete iso-

tropy of (1). Ordinarily this directional degeneracy is

resolved by introducing a finite anisotropy into Eq. (1).

The directional degeneracy is removed completely for ferro-

magnetism by the introduction of an external magnetic

field. For antiferromagnetism it is reduced to a double

degeneracy by the internal crystalline anisotropy.

In the antiferromagnetic case, J < 0, the minimization

of H results in the minimization of the individual scalar

products only if the total lattice can be divided into two

equivalent interlocking sublattices such that all nearest

neighbors of a given sublattice point lie on the other

sublattice. Again, this is fully determined except for
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a directional degeneracy. (In Figure 1 are shown the

classical ground state configurations for typical anti-

ferromagnets.)

Quantum mechanics presents no special problem in the

determination of the ground state for ferromagnetism.

It is simply the quantum mechanical analog of the classi-

cal ground state, i.e., individual lattice point spin

systems in states of maximum angular momentum along some

common axis. For antiferromagnetism, however, the deter-

mination of the quantum mechanical ground state is a prob-

lem of considerable difficulty. In fact, only certain

parameters of the antiferromagnetic ground state have been

investigated.

For classical and semi-classical treatments of anti-

ferromagnetism, the problem of the ground state has been

largely ignored, and the classical antiferromagnetic ground

state, or Neel state, has been substituted for the true

ground state. Interest in the true ground state remains,

however, because the nature of the problem is such that its

solution lies in the direction of an exact solution for the

entire model. Techniques which successfully treat the

ground state may be applicable to certain other states, and

eventually may be applicable to all other states. Further-

more, there is the question of Just how much similarity

there is between the physical characteristics of the true

ground state and the often substituted Neel state.
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B, Theoretical Treatments of the Ground State

The one exact treatment of an antiferromagnetic ground

state has been previously mentioned, 6  This treatment of

the spin one-half coupled linear chain provides a criterion

for the comparison of all approximate treatments. Approxi-

mate methods which treat well the ground state of the line-

ar chain are likely to treat well the ground state for

other spins and lattices if the method is applicable.

During the past ten years there has been much activi-

ty related to the determination of the physical character-

istics of the true ground state by means of approximation.

The first quantum mechanical treatment for arbitrary spin

systems in an interlocking sublattice structure was given

by Anderson.ll In it he applied what was qualitatively a

spin wave approximation to Eq. (1). The results are valid

for large values of the total spin of individual lattice

point systems (all lattice point systems having a common

total spin) and, when extrapolated to values of the spin

of order unity, give physically interesting predictions of

the sublattice magnetization (long range order). Of

course, the ground state eigenvalues were also determined,

but since they are not susceptible to experimental verifi-

cation, their importance is relegated to the role of com-

parison with the eigenvalues determined by other methods.

Anderson did point out, however, that in all cases treated

his approximate eigenvalue lay within rigorously determined
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limits1 2 for the true eigenvalue--thus establishing that

the method, at the very least, treats the energy adequate-

ly.

A special treatment of the short range order for the

spin one-half coupled linear chain was considered by

Hulthen. The variational technique which he used was

improved upon by Kasteleijn and extended to an aniso-

tropic Hamiltonian which is a function of a parameter,

and has as its limiting cases the Heisenberg and Ising

models. KasteleiJn also calculated the long range order

for this case, and the results obtained in the Heisenberg

limit were qualitatively the same as the predictions of

the spin wave theory of Anderson. However, Orbach14 was

able to calculate the energy and short range order for

this case as a function of the anisotropy without approxi-

mation, and his results are materially different from

those of Kasteleijn. This cast serious doubt upon the

reliability of the variational treatments as applied to

the determination of antiferromagnetic ground state param-

eters.

Pr:ior to Orbach's discovery, the variational treat-

ment of Kasteleijn had been extended to other cases.

Taketa and Nakamura 1 5 extended the Kasteleijn treatment,

including the anisotropy parameter, to two and three di-

mensional lattices, Their results in the isotropic limit

were in disagreement with those of Anderson for these
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cases, since their long range order parameters exhibited

a behavior as a function of the anisotropy which was simi-

lar to that of KasteleiJnls for the linear chain.

Marshall,16 using the isotropic (Heisenberg) Hamil-

tonian and a combination of the variational method and the

Bethe-Peirls approximation,17 calculated the energy, short

range, and long range order parameters for two and three

dimensional spin one-half systems, obtaining predictions

which were also in conflict with the spin wave theory. On

the other hand, Kubo18 used a combination of the varia-

tional method and the spin wave approximation itself to

treat lattices of one, two, and three dimensions and ar-

bitrary spin, obtaining results which were in agreement

with the spin wave theory except in the case of one dimen-

sion0 For the one dimensional lattice, Kubo predicted an

ordered ground state, a result which is in contradiction

to the spin wave theory.

C. Recent Perturbation Treatments of the

Ground State

In the past few years, three new perturbation treat-

ments of Eq. (1) for the ground state have been introduced.

The original perturbation treatment of Eq. (1) consisted

of a division into the spin wave Hamiltonian plus a per-

turbation, Walker 1 9 reports a perturbation treatment of

the energy, short range order, and long range order of the

spin one-half coupled linear chain through sixth order,
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using the Ising model as a zero order Hamiltonian. For

comparison with the exact treatments of the energy and

short range order, he derives a series solution expressed

in terms of the same parameter as was used in the pertur-

bation treatment directly from the integral equations as

given by Orbachol1 The agreement between the two series

is complete through sixth order.

The division of Eq., (1) used by Davis 2 0 to develop a

"linked cluster" expansion for the energy, short range

order, and long range order is

H -2J I [Sz3Z(SSZ)(S+Sz)] (2)
<jk> ik k

H1  -2J Z[(S-,z)(S+,Z) + (1-a)(SXSX+SYSY)1
<jk> i k j k

Although Ho does not retain as much of Eq. (1) as does the

Ising model, it describes a system of "independent parti-

cles," for which Davis is able to prove the existence of

a "linked cluster" expansion. Using this technique, he

is able to report perturbation corrections through the

seventh order in H1 for all three ground state parameters.

In order to improve convergence, he also reports contribu-

tions from higher orders, which he is able to predict on

the basis of regularities evident in the first seven orders.

He obtains energy eigenvalues comparable with those
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obtained by other workers and predicts order in the ground

state for the Heisenberg limit of Eq. (2) for all three

dimensions.

The zero order Hamiltonian considered by Roth 2 1 is

the long wavelength limit of a Fourier transform of Eq.

(1), ioeo,

0 0-2J•O[So + 01 02 1O 02

-2J I'K 1 SK + + S

K I2 -K 2  K1SK2

The prime on the summation symbol indicates the omission

of the long wavelength term, K = 0. The transformed oper-

ators are of the form

x = 2 1/2 .
S ( Z) _ exp (iK.J)Sx (4)

_K ()1/2 Y exp (-iKok)S'o
2 N k k

The sum over J represents a sum over lattice sites be-

longing to one of the sublattices, and the sum over k rep-

resents a sum over sites belonging to the other sublattice.

N is the total number of lattice sites in the crystal, and
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YK= exp (iKo(5)

with 6 representing the vector separation between nearest

neighbors. The advantage of this particular division of

Eq. (1) into zero order and perturbation parts is that

is isotropic. The convergence properties of the series

are similar to the Davis20 series for the energy before the

inclusion of the terms from orders higher than the seventh.

No short range order or long range order series have been

reported using Eq. (3)°

In addition to the above three perturbation treatments

of the ground state, Boon 2 2 has developed an energy series

based on the Ising model as zero order Hamiltonian which

is arbitrary in the spin and dimension of the lattice.

His results, however, are different from the reialts ob-

tained later in this dissertation for the general case.

They differ with Walker 19 also for the linear chain.

Table I gives the qualitative results with regard to

the prediction of a finite sublattice magnetization for

all of the treatments mentioned previously which report

such a quantity, The results are seen to be quite con-

tradictory, but in general, the variational treatments

predict zero sublattice magnetization and the perturba-

tion treatments predict a finite sublattice magnetization,

The explanations generally given for this situation are

the following: (1) the perturbation treatments begin with
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the perfectly ordered Neel state and then carry the per-

turbation through only a few orders in the calculation,

resulting in a bias towards predicting sublattice mag-

netization in the ground state, and (2) the variational

treatments reflect the existence of a statistically large

number of low-lying states which exhibit zero sublattice

magnetization. Thus the existence of a sublattice mag-

netization in the antiferromagnetic ground state seems to

be unanswered in spite of the numerous attempts to deter-

mine it0

From an experimental point of view, real antiferro-

magnets do exhibit a sublattice magnetization at low tem-

peratureso23,2 4  If the Heisenberg model is to give a cor-

rect picture for antiferromagnetism, then it must predict

a finite sublattice magnetization for, at the very least,

the ground state region. If the Heisenberg model is as-

sumed to be essentially correct for antiferromagnetism,

then it must be concluded that the number of low-lying

states exhibiting zero sublattice magnetization do not

statistically outnumber those exhibiting a finite sub-

lattice magnetization. This being the case, the predic-

tions of the variational treatments cannot be explained

away in manner previously suggested. Of course, if the

Heisenberg model does not give the picture for a real

antiferromagnet, then it may be true that the low-lying

states exhibiting zero sublattices magnetization outnum-



16

ber those with finite sublattice magnetization for the

model.

Recently, there have been some new speculations on the

existence of a sublattice magnetization for the Heisenberg

model antiferromagnetic ground state which affect the in-

terpretation of both the perturbation and variational ap-

proaches. Pratt25 has pointed out that, if the ground

state is non-degenerate, the time reversal symmetry of the

Hamiltonian of Eq, (1) requires the sublattice magnetiza-

tion to be zero. In addition, the same arguments may be

applied to anisotropic Hamiltonians of the form of Eqa (2).
26

Karayianis, et al.6 have shown that the ground state of

the spin one-half coupled linear chain is non-degenerate

for arbitrary value of the anisotropy (except for the Ising

limit), so that the arguments of Pratt certainly apply to

this case. In the Ising limit, there is a degeneracy in

the ground state consisting of the two time reversal sym-

metric Neel states for the linear chain which are shown in

Figure 1. Each of these states alone exhibits perfect sub-

lattice magnetization, but the correct linear combination

of them which fits onto the ground state wave function near

the Ising limit is the normalized sum of the two Neel

states, which exhibits zero sublattice magnetization. This

makes the prediction of zero sublattice magnetization for

the anisotropically coupled linear chain with spin one-half

consistent throughout the range of the anisotropy parameter.
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In view of this development for the ground state of

the spin one-half coupled linear chain, it is important to

consider what effect a similar development for other cases

may have on the interpretation of sublattice magnetization

calculations, such as the one performed in this disserta-

tion. Since a sublattice magnetization must be accepted

as a property of all real antiferromagnets at very low

temperatures, and since the Heisenberg model seems essen-

tially correct for the discussion of many properties of

real antiferromagnets, it will be assumed without further

discussion that the time reversal symmetry argument is

disqualified in some way for the purposes of this disser-

tation. This might come about through the degeneracy of

the ground state for the important three dimensional cases,

or through the destruction of the time reversal symmetry

by some kind of non-time-reversal-symmetric interaction,

Thus a finite sublattice magnetization will be assumed

possible, and the Neel state will be chosen for a zero

order wave function.

We now turn to the main purpose of this dissertation,

which is to propose a new perturbation approach to the

physical properties of the antiferromagnetic ground state.



III PERTURBATION THEORY OF THE ANTIFERROMAGNETIC

GROUND STATE

A. The Effective Hamiltonian

1. Division of the Hamiltonian

In this chaper we propose a new perturbation ap-

proach to the problem of the antiferromagnetic ground

state. We generate a series for the energy which is gen-

eral in the spin and valid for any interlocking sublattice

system. The Ising model is taken to be the zero order ap-

proximation, and in this way our series differs from both

the spin wave theory, 1 1 the linked cluster perturbation

treatment, 20 and the diagram technique.22 Such a zero or-

der approximation affords a means of determining the

ground state parameters without being subject to such crit-

icisms as the inclusion of non-physical states and the

omission of the dynamical interaction.2 Also, the uncon-

ventional way in which we obtain the Ising model for zero

order approximation affords a means of determining the sub-

lattice magnetization directly from the energy series by

means of the Feynman theorem.29 This is not a property of

an energy series based strictly on the Ising zero order

approximation.

The method outlined below is most similar to the work

18
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of Davis, 20 but it differs in two important respects,

First, it does not require the use of a linked cluster

criterion for the determination of physical contributions

to the perturbation series, Second, it leads to the com-

plete recovery of the Ising model as zero-order Hamiltonian

through four orders of the perturbation for the general

case, and six orders for the spin one-half coupled linear

chain. This second difference is probably the more sig-

nificant since it affords a basis upon which an instruc-

tive comparison with the spin wave treatment of the ground

state is possible.

2. Discussion of the Anisotropy

We begin our perturbation treatment with the con-

struction of an effective Hamiltonian to replace Eq. (M)o

We first write Eq. (1) in a slightly different form, i~e.

H = 2J I S'S + 1~-a) Y(~~S~~ 6
<jk> <jk> J>k>

By introducing the parameter a and allowing this

parameter to take on non-zero values, we are modifying

*

Here we have written the Hamiltonian so that J is
positive definite for antiferromagnetism, and thus J
carries no implicit sign change for any expression involv-
ing J.
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Eq. (1) to include the effects of anisotropy. In a physi-

cal sense , we are introducing a form of the anisotropic

exchange interaction which was derived by Van Vleck 3 0 for

exchange coupled spin one-half magnetic ions. This inter-

action takes the following form for arbitrary spin.

SC(jk)s ýS, (7)Hint. AV j W k

where J and k refer to different lattice sites, andjA and

V denote the three components of spin angular momentum.

The .,j) may be determined from a second order perturba-

tion calculation involving the spin-orbit coupling and

wave function overlap between nearest neighbor ions. For

S =1/ llC(jk) / alwith,ý are identically zero, giving

rise to a form which is comparable with the anisotropy in-,

troduced in Eq0 (6). Even for cases in which S / 1/2, our

form of the anisotropy is comparable with Eq0 (7) provided

the Cjk) for"jv6V are sufficiently small.

In a mathematical sense3 the introduction of the

parameter a allows Eq. (6) to represent either the Ising

model, (a=l), or the Heisenberg model 3 (a=O). In addition,

for a perturbation calculation based upon the Ising model

as zero order approximation, the factor (1-a) serves as a

perturbation parameter0
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3. Transformation to Reciprocal Lattice Space

The commutation relations for spin operators at-

tached to the various lattice points are

(SZ + 8 +

( SO,~ jk (8)

(Sojk) - &jkSjP

and

(S+,S-) = S ,J J A• J,

where we have introduced the usual relationship between

spin components and the raising and lowering operators,

s + = s x + isy,9 (9)

S- - Sx - isY.

Using these relationships and the transformation to recip-

rocal lattice space, i.e.,

S -M (2/N) 1  I exp (iA.J)S* (10)

and

(2/N)1/2 exp (-iK.k)Sk,
'k
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where the summations over J and k represent summations over

the lattice vectors of the two respective sublattices, we

find for Eq. (6),

H =2i 'S'ZS' + J(l-a)I +~SS +s; +)(I

where

•A. = 21 exp (iX.t). (12)
6

The vector 8 represents the separation of nearest neighbor

lattice sites. The commutation relations in reciprocal

lattice space are

(S~nS•m) = (2/N)l/2 nmSn+AVm, (13)

(Sln,- Sm) - 2/N)l/28nmSýn+

and

(SýnS)) = 2(2/N)11/26SnrSnzL

We define our Neel state (1.0>) to be

s+, o> = 0, (14)
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10 (N/2)l1/ 2S,5 1.0>
1 AO

S 2o> =•0,

and

s' 1.0> = - (N/2)'/ 2 s6Ao>.
\2 A01 >

Thus 10> corresponds to a product of spin eigenfunctions,

one for each lattice site, in which all eigenfunctions on

the J sublattice (henceforth referred to as sublattice #1)

have maximum z component of spin, and all those on the k

sublattice (henceforth referred to as sublattice #2) have

minimum z component of spin. This is perfect (ioe., clas-

sical) anciferromagnetic ordering.

Next, we express those states in which the z com-

ponent of spin has been reduced by one on sublattice #1,

and increased by one on sublattice #2. We do not need

to investigate states in which the total z component of

spin for the whole lattice is non-zero, since the Neel

state has zero z component of spin and Eq. (11) conserves

the total z component of spin. The states described above

are of the form

S-s + >(15)Sjkl.O ,(15
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where j and k are arbitrary lattice sites in each of the

two sublatticeso In reciprocal lattice space Eq. (15) be-

comes

(2/N) Z exp [-i(IA.J+,AAk)]S- S+ 1.>. (16)

The natural extension of Eq. (15) to other states with

total z component of spin equal to zero, e.g., for a typi-

cal state

[US-l)(Sj2).*.o(Sn )x [(S +( )ooS+n)]10>•(7

1l 2 ki 1 ( 2 k j~

results in a reciprocal lattice wave function which is a

linear combination of terms of the form

BJ 17B(a.) B2(5Ai&(Sý) + (8

where a A = i ••ZaL = n T Thus we may take IV as represen-

tative of a typical wave function involving the reciprocal

lattice spin operators and having total z component of

spin equal to zero.

4. Construction and Physical Significance of the

Effective Hamiltonian

We now define an effective Hamiltonian to replace Eq.

(11). We begin by writing Eq. (11) as the sum of three
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terms,

H,= 2J 6ýSX' S'19
N1 _'2

*HU - J(l-a)T- ýSjj S..)\~
1,H = J (1-a)X SAS l-l

The second and third terms of Eq. (19) have the following

physical significance- the second term decreases the z

component of angular momentum on sublattice #1 by one unit,

while simultaneously raising the z component of angular

momentum on sublattice #2 by one unit. When applied to

the Neel state described by Eq. (14), we may think of HU

as raising the Neel state to an excited state. This prop-

erty of Hu is the reason for choosing the subscript U to

denote this term of the Hamiltonian. The operator HU

raises a given state "up" from the point of view of the

number of excitations present over the original Neel state.

Correspondingly, the operator HD lowers the number of ex-

citations "down" from the number of excitations present.,

We shall leave Hu and HD unchanged from their form in Eq.

(19), and shall incorporate them directly into our new

effective Hamiltonian. We derive this form by applying H.

to the typical wave function of Eq. (18). H. may then be
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commuted through all of the operators in Y until it oper-

ates directly on the Neel state. The resulting extra terms

all involve z component spin operators which are also com-

muted through all operators until they operate upon the

Neel state. Since the Neel state is an eigenfunction of

all z component spin operators, we may replace them with

their eigenvalues to obtain

"Azy - [E° L

(22
41 y ," + --

where E0  -2JS2 (N'0/2), 4= kJSY0, and

1 1

(s+ )-'(S+

Eq. (20) indicates that the Ising interaction may be

expressed by the sum of two parts. The first part consists

of a Hamiltonian which describes independent excitations

above the Neel state, and the second part describes an in-

teraction between these excitations. If we write the
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Hamiltonian of the interaction as HI, then our effective

Hamiltonian takes the form31

Heff = Ho + HI + +HD" (21)

The operator form for Ho is

H - •2JQ1/2 o6 • f-il/2S2 - Sz + Sz

(22)

but we may always represent Eq. (22) by its eigenvalues

in the work that follows.

Having defined the effective Hamiltonian, we are now

in a position to apply perturbation theory to Eq. (21).

B. The Application of a Modified Raylei&h-Schrodinger

Perturbation Theory to the Neel State

1. The Modified Perturbation Method

We divide Eq. (21) into zero order and perturba-

tion Hamiltonians,

0 2 ý,+ ý-)(23)

and

H, HU• + H: + HD (24)

The as defined constitute eigenfunctions of Ho.
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We do not consider a particular choice of W to span the

(2 S+l)N dimensional spin space of interest, but only refer

31to the fact that such a choice exists. Taking the Neel

state for our zero order wave function, Y0, we have upon

application to the Rayleigh-Schrodinger perturbation

theory,

S= EOY o, (25a)

Ho'y, + HjijO = Eq + ElIP0, (25b)

HOT RU + =T EOJI) + EU)V + E2 (, (25c)

etc.

The first order correction to the wave function, Y i'

may be expressed as a sum of contributions involving dif-

ferent numbers of "independent" excitations, i.e.,

()+ y(l) +j) + *.,(26)

n

where

Y1 1

(1) ea- P~S)(xs+ )l0>,



29

etc. Here we have restricted YI to contributions of the

form of Eq. (18) having an equal number of spin operators

for each sublattice. Such contributions satisfy the eigen-

value equation,

sZ (n)
3 total 1 ,

where StaIis the operator for the total z component of

spin for the entire lattice, i.e., SZ z S +total j J k 1co
That only such contributions are necessary for the expan-

sion of 4l (or any higher order correction to the wave

function q)) follows from the two properties of H1 andS0,

St tal4)O = 0 and (Szotal' H1 ) = 0o In other words, the

perturbation H1 does not connect q) with any states having

a different total z component of spin. We have previously

discussed this property with respect to the total Hamil-

tonian, Eqa (11), but it is necessary here to specify it

for the individual zero order and perturbation Hamiltoni-

ans,

Thus we have expressed Yl in terms of a set In'

where in) is a linear combination of states of the lat-

tice wherein there are n spin operators S• on sublattice

#1, and n spin operators S+ on sublattice #2. We notice

that the (n) are orthogonal in n. Further,

1n) = (E0 + n)yn), (27)
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and thus from Eq. (25b) we get

, L (n) = 4 1 -HU)ý1 0 , (28)

since HPi•0 = 0, and HDYO = o. On the left of Eq. (28)

are a set of contributions to ql arising from orthogonal

subspaces of the original (2 S+l)N dimensional spin space,

and Eq. (28) must be satisfied separately in each of these

subspaces. The components of H1 have three important

properties with respect to y(n)"

(%(n) = •(n+l) (29)

HIY) (n) = 9(n)

and

HD(p(n) = n-)

Stransforms a function y (n), defined entirely in the

subspace n, into a function O(n+l), which is defined en-

tirely in the subspace n + 1. H, leaves unchanged the sub-

space in which {(n) is defined, and HD transforms q(n)

into a function O(n-1), which is entirely defined within

the subspace n = 1.

In the n = 0 subspace we have from Eq. (28),
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El& 0= 0.

and therefore

For n = 1 we have

(1~) - U ,

and therefore

= -1" ' oo

For n > 2 we find that yl(n)= 0, so the first order of the

perturbation yields

E Eo, (30)

and

since (0) = 0 in general.

Extending this procedure to higher order, and intro-

ducing the simplified notation

H, - up (31)
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and

R•= D•

we find for the energy corrections through the sixth order

El 0, o•(32)

-1

E2 =- -<DU>ý)

E = 1/A3[<Du> 2 - <1)12 - 2

E5 = I/j'[-3<DU><DIU> + <DI 3 U> + <D2UU> + 1U

E6 = i/t&5[-2<DU>3 + 4<DU><DIU> + 7/4<DU><D2 U2>

2 2+ 2<DIU> - 12-DIDIU2> - <b22U>

1 .~<2un 2> <DI4~U> 1. 2~i 2u2>

1 -U3 < IDUIU>]J

where all expectation values are understood to be taken

with respect to the Neel state.
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2. The N-body Divergence Problem

When we calculate explicitly the value of the

brackets, the brackets which contain a single D operator

and a single U operator are found to be proportional to N,

the total number of lattice sites in the crystal. Brackets

with more than a single D and U are of a higher order of N.

Thus, all terms of the En which are products of two or more

brackets are at least of the order of N 2, and do not repre-

sent a physical contribution to the En. The argument given

for this conclusion is that if En •' N2 , then E -N 2, and

the energy per lattice site, E!N, becomes unbounded as the

number of lattice sites increases, i.e., limN_ ,E/N--.

This is also true for higher powers of N. However, these

non-physical terms are only apparent, for contained impli-

citly in other terms of the same order we find the negative

of these terms.

Before we examine this cancellation for all six or-

ders of Eq. (3.2), we investigate this cancellation in a

related problem, i.e., that of a perturbation Hamiltonian

consisting solely of the operators D and U. In other

words, we assume I E 0. Our energy terms are then

Ej = O, (33)

=- A<DU>,
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E3 = 0,

E =. L[<DU>2 1 D2U2>],

E' =
5 O

and

i .1 .2D> 2+ 7-"D2T 2><DU> _ 1 D2UDTJ2> 1 i<]A 3 >16 jý_ -2D> l<D f2-

We proceed to calculate these terms explicitly in order to

show the cancellation of multiple bracket terms.

In E2 we find that <DU> 2 <Q>, where Q = (D,U), the

commutator of D and U. For <Q> we find

< J 2 (l-a) 2 ( N 4 (%, )2(
2 2 o (34)

In E- it is found that <D 2U2> = 2<(;2 + <F>, where

F = [D(Q,U)]. A calculation of <F> yields

,4( - )4 N( ̂
<F> -- J 4 (1-aj (-•1 1 6 (SXo)2 x [ 6 (SXo)2.Q1 - 4(sYo) + l.

0 2 02 (35)

In Eg we find that <D3 U3 > - 6<Q>3 + 9<QŽ<F> + 2<R+R>

+ <V>, where R = (QU) and V - [D(F,U)]. A calculation of
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<R+R> and <V> yields

<R+R> (1-a) 6 (No"0 6 2= - 0,2 -- -2 6 ( ~ ) (36 )

2( -'o45'(0+40)
x [4(sýo)4(1 5 4° - 48(s- i3-0ýo 4 0 o-- -2

+~ ~( (So (4o+3 Ko-31
+ 4-, 2L'_0 2 8(sKo) + 1],

and

j•(6•_y ,o 2•" -••o4ý YO+4O)
<v> = , a, ("0)26s0) x [4(s2 o

YO2 2 -o 4

3 0< - + ... 2(5 02+36-3

12o(S•ro)- + 8+ 2 (37)
2 0 2 02

-38(SW) + 71.

Using Eqs. (34)-(37) in conjunction with Eq. (33), the

energy correction through six orders is found to be

,J(la2 N•O

E1 2° 2 --- )o, (38)
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11L ajý NY 0) l8 ýO 2 2 (S60)

x [6(SKO)2ý0_1 - 4(SýO) + 11,
Y 20

and

Eg ro) 1
64602 2

4(15KO 2-45YO+4o)
x (P(S'(O) - 120(Sý0)3_"

Y04 ro 2

+ 8(SYO)25ý0 2 + 66-0-6 _ 29(SýO) + 41.
ý10 

2

Each finite energy correction is strictly proportional to

N.

Returning to the consideration of the total perturba-

tion Hamiltonian, Eq. (24), we collect together all terms

of Eq. (32) which are proportional to (1-a) 2

)2= _ 1E('ý_a 2i!<DU>, (39)

,(l-a)2 1
3 2 <DIU>,
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E(la) = 1D2
'4 63

E(l-a)2 - 1 DI 3U>,

and

E~- 2 1=

Since

UI0O> = - 2JU1O>, (40)

these energy corrections are manifestly proportional to N

in view of Eq. (34).

For the contributions proportional to (1-a) 4, three

of them have been calculated explicitly, i.e.,

E41-a)4 = • <DU>2 - 1 D2U2>}, (41)

E(1-a) <D2=U - 1 D 2- US<3<DU><DIU> D2 UIU>

and

E.l~a) -= LJ4<DU><DT2U> + 2<DIU>2 - 1<DIDIU2 >

-<D 2 UI 2 U> - 12 222> 2 DIDUIU>}
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Using Eq. (40) and the similar relationships,

IU21o> = - 2J[2U2 t0> + 2U1 Ulf1 .0>], (42)

where

UU 1u0I> j2 ()(1-a )2 Z
1 N

22 1A)1.> (243)

and

I 2 U2 1.0> = (-2J)2{24u21.0> + 10U1 U1 ,1 O> + 2UI 2 tUI, 2 [.O>J,

(44)
where

u1 2 ' 1U' 2 .O> = (.) 2 J 2 (1-a) 2  X y (
U121U11 N~} LA. (245)

x Sý+)QsA, -)) -S16l (Sc2A/2)->

we ind for E(1-a) E(1-a) a 1-a) 4

E4 5 ,and4

E(1-a) 4  _1 >E4la4= - -F>, (246)

A3  (6

,5( a){4 2J 2<F> + (1-a) )16(S2Ao2
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and

4 
2

1-la) = (-2J .11FEý Z5 ~2

+ .24,T (12a), "( 0) 2S&) 4( 0  l0

Y 
0 2

From Eq. (35), these energy corrections are also manifest-

ly proportional to N.

3. The Recovery of the Ising Model as

Zero Order Hamiltonian

Examination of Eq. (39) indicates that a very

regular series is developing for the terms proportional to

(1-a) 2 . If we project this regularity to orders higher

than the sixth, we obtain for the entire contribution to

2the energy which is proportional to (l-a) ,

E(l-a)2 - 1 - )n<nU> <DU(>
E -D2JU (47)= Zn=0 -J

in view of Eq. (40). By predicting and including all terms

proportional to (1-a)2 in the energy correction, we are ef-

fectively recovering the Ising model as zero order Hamil-

tonian to second order in the perturbation.

In order to recover the Ising model through fourth

order, we must be able to determine the regularities in the

energy corrections which are proportional to (1-a) 4, which
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we may represent by the expression

ZE~la)4
n:=4 n

Assuming that terms proportional to powers of N greater

than one are always cancelled out of our energy correc-

tion in each order n, as they were for n = 4, 5, and 6,

the physically important part of the energy corrections is

entirely contained in the single bracketed terms. These

terms have the general form if proportional to (1-a) 4

<DIPDImUIqU>; p, m, q integer. (48)

This is shown explicitly below. It is only necessary to

reduce the terms of Eq. (48), i.e., remove contributions

proportional to powers of N greater than one, to obtain

the non-vanishing contribution to the perturbation correc-

tion. If we indicate a reduced term by a subscript R, then

the entire contribution to the energy series which is pro-

portional to (1-a)4 may be written

E(l-a)4 1 1) l

S- •-• Z (- -1DIPDImUIqu.

p q,mýO 2M(49)

If we let m + p + q = 0, we get the single bracketed term

in E (-a)4. Letting p + in + q =1 yields three single



41

bracketed terms, two of which are equivalent because of the

Hermitian property of the brackets, i.e.,

<D2UIU> =<D2UIU>+ = <U+I+U+D+D+> = <DIDU2 >. (50)

Thus p + q + m = 1 yields the single bracketed terms in

E(l-a)4. Putting p + q + m = 2 yields the single bracketed
terms in El-a)4, provided we use the Hermitian properties

of the individual brackets.

With Eq. (40), together with the relationship

IU2 10> = (-2j)mj 2 mu21I0 > + 2 (3m- 2 m)UiU1 o>

+ (4 m-2' 3 m+ 2m)UI 2 ,UI, 21.,>J, (51)

we find for E(l-a)

(-)41 2J 2
Ea = 2(\-2J)3  -F> +, 3 ý.D UUI>R

+ (2J)2 -7 2<' 2 >R . (52)+2(A_4j)(&_3J)- 1I2,UI,

A similar treatment of the terms in Eq. (32) which

are proportional to (1-a)6 may be undertaken. The expres-

sion equivalent to Eq. (49) for these terms, subject to

the assumptions made in obtaining Eq. (49), is
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S1 m+p+q+r+s 1 1
E(1- 12_ 2r+s m

m, p, q, r,s=2

x [<DPDrD~mU~sU~qU> R

+ 3m+I<DIPDIrUImDIsUIqU>R• (53)

In Appendix A we give the reduced form for Eq. (53),

and perform the sums. The resulting expression for the

general case is so unwieldy that it was determined that

the additional correction obtained from calculating Eq.

(53) was not worth the effort. It did, however, seem im-

portant to carry out the calculation of Eq. (53) for the

spin one-half coupled linear chain, which is done in Appen-

dix A. The numerical result is the same as that of a per-

turbation series developed by Walker19 for this particular

case, thus confirming our development of a perturbation

series with the Ising model as zero order Hamiltonian.

C° The Perturbation Series for the Energy

1. The Second and Fourth Order Corrections

for the General Cases

For arbitrary spin and for the linear chain, plane

quadratic, and simple cubic lattices, the series expansion

in powers of (1-a) 2 for the energy is

E = EO[l + C2 (l-a) 2 + C4 (l-a)4 + C6 (l-a)6 + ... ](54)
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where

1C2 2"(s r) - ,

C4 - 1j

16x - )2(S ) [ Y - S - 1 2

S-I46r2 + 15Ko - 15
Sý 6 0

2 2

S32(s })3 5,0o2 + 3Yo-3 - 42(S o)2 2 2 Ko2 + 9% -9

ýO2 -( 
2(~

+ 24(s~o) - 3].

In Table II are listed the values of C2 and C4 for the

three lattices, where the spin is varied from S = 1/2 to

S = 2. We also give the normalized (to the Ising ground

state energy) energy for the isotropic case, a = 0. These

are necessarily positive, and thus the larger the numeri-

cal result, the lower the corresponding ground state ener-

gy. For comparison we give the results obtained by the

linked spin cluster method of Davis 2 0 for the equivalent

of C2 and C4, and for the normalized energy through terms

of the order of (1-a)4 (Linked Cluster I in the table).

We also repeat the final normalized energy reported for

the linked spin cluster method, which includes part of the
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contribution from terms of the order of (1-a)6 (Linked

Cluster II in the Table). Thus the difference between the

final reported normalized energy and the normalized energy

through terms of the order of (1-a)4 for the linked spin

cluster method (Linked Cluster II and I, respectively) lies

with the partial calculation of C6 performed by him.

For the linear chain with S = 1/2, we obtain the quite

respectable value of 1.7500 for the normalized energy. The

exact energy eigenvalue to five figures is 1.7726o7 This

may be compared with the spin wave ground state energy of

1.7268 and the linked spin cluster result of 1.7363.

Upon investigating Table II, we find this work to yield

lower eigenvalues than that of the linked spin cluster

method for the cases in which the spin, S, and/or the di-

mensionality of the lattice is small. The partial calcu-

lation of C4 in Linked Cluster II appears to be sufficient

for the two dimensional lattice when S > 3/2, and for the

three dimensional lattice when S > 1. For the one dimen-

sional lattice, the partial calculation of C4 does not

seem to be adequate.

2. The Energy Series in the Spin Wave Theory

as a Function of Ising Anisotropy

Turning to an examination of the spin wave theory

of the antiferromagnetic ground state1 1 and its first or-

der correction given by Oguchi,32 we determine its rela-

tionship to the present work. The spin wave theory has
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proved to provide the most successful description of a

Heisenberg antiferromagnet at temperatures T >> TN (TN =

Neel temperature) short of an exact treatment of the model,

and consequently one expects it to give an adequate de-

scription of the ground state. The spin wave Hamiltonian

is obtained from Eq. (6) by replacing the angular momen-

tum operators with equivalent operators, written in terms

of the operators applicable to the problem of the linear

harmonic oscillator, i.e.,

zS = S-ni (55)

+ (2S)1/2(1 - nj/2S)lI=aj,

S_ - (2S)l/2a (1 - nj/2S)1/2,

= - S + nk,Skk

s + = (2S)1/2 b( - nk/2s)1/2

sj - (2s)1/2(l - rk./2S) 1 / 2 bj,

where

n = ajaj,

nk = kb W
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and

ajaj -aja = .,

bkbk - bkbk

Substitution of the operators of Eq. (55) into Eq. (6)

yields

H = - 2JS2 40) + 2JSY0(In +Znk) (56)

"+ 2JS(l-a) Zk (1 - nj/2S)l/2aj(l - nk/2S)1/ 2 bk
<jk> k

"+ 2JS(l-a) I a*(l - n /2S) 1 / 2 b*(l - nk/2S)I/2
<Jk> J/k k/S

- 2J 1 n.ink,
<jk>

which, to order 1/S in the binomial expansion of the op-

erators (1 - nj/2S) 1/2 etc., equals

H = 2JS 2 (-9 ) + 4J86(Zn +Zn (57)

+ 2JS(l-a) X (ajbk+abk)

<jk>aJbk jnk a

-1J(1-a)[ I-(n a bk+ajnkbk ajnjbk+ajbk~nk)]
tj <Jj jk>
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- 2J n n k#

The first three terms of Eq. (57) constitute the spin

wave approximation, and the last two terms constitute the

perturbation Hamiltonian considered by Oguchi° If the

first term of Eq. (57) is considered to be of order unity,

then the spin wave approximation is correct to order 1/S,

and all of Eq. (57) is correct to order 1/S 2 .

We repeat the spin wave calculation, and the Oguchi

correction, to the ground state because of the insertion

of the anisotropy parameter (1-a) in Eq. (57), It will

subsequently be shown that when a = 0, we oDtain the re-

sults reported by Anderson and Oguchi. For the purpose of

extracting the long range order parameter from our expres-

sion in later sections,we add to Eq. (57) the additional

anisotropy

Hanis = •-S) = gA[SN - nj -knk].

(58)

Eq. (58) represents the anisotropy provided by an effec-

tive field which is directed oppositely on each sublattice,

but it is inserted here simply because it allows the sub-

lattice magnetization to be determined from the energy

series by means of the Feynman theorem. 2 9

The diagonalization of the spin wave Hamiltonian is

accomplished by means of two successive canonical trans-
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formations. The first transformation is to the operators

belonging to the reciprocal lattice.

a, (.)1/2• exp (iA.J)a, (59)N

'A N

b,= (_•)I/2• exp (-ij.J)a

b* = 1/2 exp (-.A,.k)bk
k

With these transformations, Eq. (57) plus Eq. (58) be-

comes

H 2JS2  + 2gNSHA(() (6o)

"+ 2JSy0 (1 + 2H-O)[I (aaA+bAbA)]

"+ 2JS(l-a) Z •(aAbA+abA)

2

- 2J(l-a)(.ff) L [6(A ~A~ 3 A* aaA a b

1 A 1-, 2N+ r 4A1 A2 aA~ ?\
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+ (-l+'2 -I'X 3 +A4) A al baa,3
+ ( _kl+ 2+"3 /Y X 2+A _ý A1l -A2 b3 n 4 3

2* * *

- ~ 2J 2: 6( * b

N 1,A2,3,4  l -A'/ 'z,ý4Ala42 A3 k4 *

Using the transformation to spin wave creation and destruc-

tion operators,

a, = OýA coshe - 6 sinhe@, (61)

bA - 0( sinhe + cosh 0

a.A = OA coshEx - /A9, sinhe.\,

bA = 0( sinhX +• coshe,

with

t l-a) g4HAt h21,X _ o ; D --1 + S---O
anh X 1 ~ D ~D l 2 JSrO

we can diagonalize the spin wave Hamiltonian [the first

four terms of Eq. (60)], resulting in

H 2JS "N•O- + 2gHIA(E)S (62)
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+ 2J s x +2(1-2)2 1/2

AA 2

- 2JSo{nD - [D 2  &2 (1-a1)2 1 1/2

x 0

For the ground state, Ps = 0 and <,*/>= 0, and

if also HA = 0 we get for the energy of the ground state

E =- 2JS 2 (--! ) - 2JST-o - [1 - 1/2

k o0 (63)

which is Anderson's result when a = 0.

If we compute the first order perturbation correction

to Eq. (63) using the remaining terms of Eq. (60) as a

perturbation Hamiltonian , we obtain the equivalent of the

ground state energy correction obtained by Oguchi, but

with the insertion of the anisotropy parameter (1-a).

D- --Y --2 (1-2)2

& E = - 2JS 2 - 1
-(TS) 1) 2_o2 1 ]

(64)
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6A2(1-a)2y2
0

(D2 (1-a) 1/2

S 2•

2Y2 2 a 2) 2 �2 (1-a) 1/2
+ a(2-a)(1-a) -d-(D 22

(D2  - 2(1-a)2

which yields Oguchi's correction when a = 0.

Table III gives the eigenvalues E + 6E for the cases

investigated in Table II. In most cases, the spin wave

theory plus the Oguchi correction yields eigenvalues which

are lower than those yielded by our method. However, the

correction for the linear chain with S = 1/2 badly over-

shoots the exact eigenvalue, while for the same lattice

with S = 1 our method gives an eigenvalue which lies lower

than that of the corrected spin wave theory. This oscilla-

tory behavior of the corrected spin wave theory seems to

be a property of the smallness of the spin, for a similar

behavior may be seen in the plane quadradic and simple cu-

bic lattices. Of course there are no exact values with

which to compare in the two and three dimensional cases,

and the oscillatory behavior is inferred from the behavior
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of the corrected spin wave eigenvalues relative to those

of our method.

3. Comparison of the Energy Series from the
Spin Wave Theory with that of the Perturbation
Theory

The relationship between the spin wave approach

and the modified perturbation approach may be determined

in a more elaborate manner than by a simple comparison

of eigenvalues. This is possible because of the presence

of the two expansion parameters, l/SW0 and (1-a) 2 . common

to the energy series of both methods. The entire contribu-

tion to the normalized energy eigenvalue of the antiferro-

magnetic ground state resulting from a continuation of

either of the above methods may be expressed in the follow-

ing general form,

E/E0 - 1 + I anm(l-a)2n(l/SýO)mo (65)
nm=l

Examination of Eq. (54) and Eq. (65) reveal the fol-

lowing relationships,

C2 = alm(11SY)m. (66)
m-1

= z a2m(l/S(0 )m,i4n- )
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and examination of Eq. (63), Eq. (64), and Eq. (65) yields

Spin Wave Correction 1 2n

0 F n=l
(67a)

Oguchi Correction or C
First Order Perturbation 1 ,• a(la) 2n
Correction to the Spin (S6) 2 n-i

Wave Theory (67b)

From Eq. (54), we can develop the first few terms of

Eq. (66) explicitly, and from Eq. (63) and Eq. (64) we can

develop the first few terms of Eqs. (67ab) explicltlyo

The terms which are common to Eq. (66) and Eqs. (67a,b)

are

al = 1/2, (68)

a12 - 1/4,

a21 = 8 3 02 '

3( 02-4044)
a22 -- 16 02

06 6a

Eq. (65) may be expressed in a tabular form, in Which
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the rows are labeled according to powers of (1-a) 2 , and the

columns by powers of 1/SX0.

1 1 1 1

1(o)2 (°)3 ( (69)

(l-a)2
(1-a) a11  a1 2  a13  a,4

4(1-a) a21  a 2 2  a 2 2  a 2 4

(1-a)6 a31  a3 2  a33

(la8
(1-a) a 4 1  a 4 2

Spin wave theory and its successive corrections cor-

respond to adding the terms in the next column to the pre-

vious results. Beginning with the Ising model for a zero

order Hamiltonian and computing succeeding orders of the

perturbation corresponds to taking into account the terms

of successive rows.

4. A H~ybrid Theory

It now becomes possible to take advantage of all

of the terms in Eq. (69) in both the first two columns and

the first two rows to compute the ground state energy ei-

genvalue. This is done simply by adding together C2P C4 ,

spin wave correction, and first order (Oguchi) correction.

The twice counted terms, all, al2, a21 , a 2 2 , are then sub-

tracted from the resulting sum. These results are
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presented in Table III under the heading "Hybrid Method."

The hybrid method yields an eigenvalue lying lower than

either the corrected spin wave or the method of this dis-

sertation, except for the spin one-half cases and the sim-

ple cubic spin two case.

The corrected spin wave theory may be expected to ap-

proach the exact eigenvalue for large spin and number of

nearest neighbors. For the spin one-half cases, however,

the apparently "better" (i.e., lower) eigenvalues produced

by the corrected spin wave theory may be misleading. In

the spin one-half linear chain, the lower eigenvalue given

by the corrected spin wave theory must be raised by addi-

tional corrections, because it lies a great deal lower than

the exact eigenvalue. In this particular case, the hybrid

theory yields an eigenvalue which is less than 1 in error.

It seems likely that because of the behavior of the cor-

rected spin wave eigenvalues which was pointed out at the

end of Part (2), Section C of this chapter, the hybrid

method gives the best eigenvalues, except as the spin gets

relatively large.

We now turn to the consideration of the short and

long range order parameters for the antiferromagnetic

ground state.
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D. Short and Long Range Order

1. The Feynman Theorem

There is a theorem due to Feynman2 9 which we now

need in order to determine a perturbation series for the

short and long range order parameters from the series for

the energy. Briefly, the theorem is this: Given the

eigenvalue equation

H(Ak) (A-{) - U(A~)y(A), (70)

where H(A) is an operator expressed as a function of a

parameter A, then

SA Jq) 3 (A)dv. (71)

For a proof of Eq. (71), the reader is referred to the

article by Feynman,
2 9

2. The Short Range Order in the Modified

Perturbation Theory

Once the short range order parameter has been

defined, the Feynman theorem may be used to generate the

corresponding series from the energy series. However, it

is necessary that the Hamiltonian be expressed as an ex-

plicit function of the short range order operator. The

natural definition of the short range order operator is

one which measures local spin correlation along some pre-
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ferred axis, i.e.,

y' SjSko (72)
s2(NI() <jk> Jk

lop is the average spin correlation along the axis of an-

isotropy between spin systems on neighboring lattic sites.

It is normalized so that for perfect ferromagnetic ordering

<Op> - 1, for a system of completely independent spin sys-

tems, <0p > 0, and for perfect antiferromagnetic order-

ing, < =op> -1.

In terms of the Hamiltonian of Eq. (6), and thus also

of Eq. (21), the short range order operator takes the form

1

•op-- 2[1 (o l + (1-a)--1H. (73)

Application of the Feynman theorem to Eq. (54) then yields

= <ýop>true ground state (74)

- [1 + (1-a) EO)•- o + 2-)2

2JS2 (%))Pa 
0 1

+ C4 (1-a) 4 +

= - 1 + 02(1-a)2 + 3C4 (1-a)4 + 5C6 (1-a) 6 + ...
C'
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Values of I in the isotropic limit (a-0), determined from

Eq. (74), are given in Table IV. It is interesting to com-

pare the approximate value of ), determined from Eq. (74),

with the exact value of ý in the isotropic limit, deter-

mined by Orbach 4. for the spin one-half coupled linear

chain. These are, respectively, Tt -0,7500 and ?J=

-0.5909. Thus, Eq. (74) does not represent the short range

order with nearly the accuracy with which Eq. (54) repre-

sents the energy to this order in the perturbation. In

Appendix A we determine C6 to be zero for the spin one-

half coupled linear chain, so that the value of is not

further modified until the eighth order of the perturbation.

In Section E of this chapter, we will discuss further the

properties of the short range order series for this par-

ticular case in conjunction with a discussion on the con-

vergence properties of the energy, short range order, and

long range order series for the general case.

3. The Short Range Order in the Corrected

Spin Wave Theol.7

Application of Eq. (73) to the spin wave perturba-

tion expansion of the energy, Eq. (63) plus Eq. (64),

yields the short range order as determined by the corrected

spin wave theory,

7ý 1+ G -.- + (_I_)2 +(75)
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where 2

¥2

Cl 61o()X (---(I-a )2) 1/2 _ 11,

a2 = YO N ( 2(1a a)2) 1,2

x [l - (I 2--(1-a) 1

00- (2 21ý(-a)2(l - 2(-a )2)- 1/2
S2 

2

+ [(l-a )2 4 
6• -1/2

-+ 22 [(1-a) - (1-a),

20 2

[021_ 

223 

-1/2]

r (I~ V -- (1-a )2)- +2 2 r•-•( o4 °2 l _a)62-2]o

Values of in the isotropic limit (a = 0).; deterpined from

Eqo (75) through G2 , are given in Table TV. However• no

values are given ifor in this approximation for the linear

chain. This is because Eq. (75) is indeterminate for the

one dimensional lattice, Both G1and G2are not finite for
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this case, and thus this indeterminacy is independent of

the spin. This behavior is definitely a property of the

approximation, and not of the short range order parameter,

since from Orbach's work14 we know the short range order

in the isotropic limit of the spin one-half coupled linear

chain tobe finite. We will find this behavior to be true

also of the long range order for this lattice, when it is

determined by means of the spin wave approximation. It is

most likely due to the convergence properties of the series

for these cases, ie., when the terms in the series for the

short and long range order are expressed in a form similar

to that of Eq. (69) for the energy, convergence depends up-

on the order in which uhe terms are added up. If they are

added up by rows (modified perturbation theory), conver-

gence is evident, and if they are added up by columns

(spin wave approximation), the series diverges.

In Table IV, we also include the short range order

parameter as determined by the hybrid method of Section 5,

Part (4) of this chapter.

4. Comparison of the Methods for the

Determination of the Short Range Order

In view of the fact that the corrected spin wave

theory is inadequate for the determination of the short

range order of the only case for which the exact value is

known, no absolute comparison of the methods is possible

at present. Since the spin wave approximation represents
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an expansion in powers of I/S(, one expects it to be the

best method when the spin and dimensionality of the lattice

are large. However, as has already been pointed out, the

short range order Series diverges for the linear chain no

matter how small the expansion parameter, and thus one can-

not fully depend upon this criterion. We conclude that,

for the short range order parameter, the modified perturba-

tion theory gives the more meaningful prediction, This

conclusion will be borne out in the discussion of the rel-

ative convergence of the series generated by the two meth-

ods which appears in Section E of this chapter.

5. The Long Range Order in the Modified

Perturbation Theory

The choice of an operator to represent the long

range order is restricted here by the conditions necessary

for the application of the Feynman theorem. The natural

extension of the operator which was used to represent the

short range order would be one which measured the spin

correlation along the axis of anisotropy, ioe.,

lim 5 lSz+ (76)
I'Op 2 J8

or one which measures the general spin correlation,

pop = lim S--• ~oj oj+6o (77)
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The correlation is measured between spin systems which lie

at large distances from each other, hence the concept of

long range order. When a wave function is available, such

definitions of the long range order operator as Eqs0 (76-

77) are possible,33 but when use is made of the Feynman

theorem, the condition that the Hamiltonian must be an

explicit function of the long range order operator pre-

vents the adoption of either Eq. (76) or Eq. (77)° Con-

sequently, we are constrained to use the concept of the

sublattice magnetization, which bears some relationship to

Eq. (76).

The sublattice magnetization operator may be expressed

as follows:

1 -Sz (78)

p -S(N/2i i(s-s)

=1 1 (-j

I /S (1 / a

Thus, for perfect order, < ± 1, depending upon the di-

rection in which the sublattice is magnetized. For com-

plete disorder, < > = 0. The concepts of order and disor-

der used in conjunction with Eq. (78) are not identical

with those used with Eq. (76). The correlation between
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spins at large distances can be such as to yield zero for

the expectation value of Eq. (78), while yielding a finite

value for the expectation value of Eq. (76). In other

words, the spins at individual lattice sites may be chang-

ing with time in such a way as to wash out the average z

component of spin, and yet be in step with the time varia-

tion of each other so that the average product is non-

zero. If, however, the sublattice magnetization is finite,

then the average z component of spin at individual lattice

sites is not zero, and the spins are "pinned down" to point

mainly in the z direction. In this case, Eq. (78) bears

the following approximate relationship to Eq. (76),

<•fEq.(76) = lim <S jzz +8> (79)

SZ ZJ

= lAm <Sl><Sz.•

=<S >2

[S(N)] 2 J

We will use this relationship later, when we compare values

off with
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In order to apply the Feynman theorem, it is necessary

to express the effective Hamiltonian, Eq. (21), as an ex-

plicit function of Eq. (78). We repeat Eq. (21), with H0

replaced by its eigenvalues with respect to the set of

states described in Eq. (18),

Heff = E0 +4(Ta,+ZaAA) + + HU + HD (80)

with Za =Za•. Thus Za/\+ Z-- 2Za', and

>aA D, ef" (81)

The Feyinman theorem then yields

"eop true ground state (82)

1 Z• N aJo [lEO C(1-) 2°']

S[1 + C(1-a2 + C4(1-a) 4

= 1 - D2 (l-a) - D4 (1-a) -

where

D <DU> 2 (83)4Ds2 = 2N•'o (&•-2J)

_ (S {"T

(2s•o)
S(2sYo-i) 2,
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and, for S0 1 .(linear chain with spin one-half),

D 8J 2 N4Ot A{3<F> + 2(4A-IIlJ)J<. 2•U•>Ul
2 1

2(4S o_0)(2Sýo_) 88S o)

-16 8% X,°2 + 15Y, -15
21 (8310 2

10

+ 2(Sý°)2 82 2 + 15do - 15
yo 2

- 6o(s~o) + 511

and, for S(O 9 1 (all other cases),

D A {3<F> + 2J(4-llJ) <D 2UIU1,>8js2 (-!Y-) (4-2J) (43J)2  (85)

+ 2J2 (52-32J&+5oJ 2) <D2 U i >(4-3J) 2 2A

WsO) 152(S6
( Aý---)4
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8ý 2 +5 - 51- 64(s o)5 0•o + 51•o 5

+ 8(Sdo) 4 21Oo2 + 459ro - 459

ýo2

_16(S•0~) 12l9 2 + 0122 - 444(sXo + 45},02

The difference in the forms of R for Sý0= 1 and S 1

arises from the fact that in Eq., (52) <D2Ul2 ,Ul,2>R = 0

for S•0 = 1, and <D I'UýJIJ 2 >R '8 finite for Sao ' 1.

6. The Long Range Order in the Corrected
Spin Wave Theory

Turning again to the corrected spin wave theory,

we determine the expectation value for the long range or-

der operator, Eq. (78). In view of Eq. (58) and the

Hamiltonian, Eq. (60), application of the Feynman theorem

yields

1 (86)
= gANS aHA'(
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where E is the sum of Eqs. (63) und (64). The series for

Pis then

1 (87)

where

K1  [)(1 - "21

K2 = 2 () 2 Z[(l-a) 2 - (1-a)4

2,, ir 2 , i(l _a ) 22 t.2 2(1a )2 _3/ 2 } o

X i fOA- W,( )A (1-

00 YO

For a = 0, KI is the spin wave correction to the

normalized sublattice magnetization (i.e., our long range

order parameter), and K2 = 0, consistent with the result

of Oguchi.
3 2

7. Comparison of the Methods for the Determination

of the Long Range Order

In Table V are given the values of D2 and D4 for

the cases investigated previously. In Table VI are given

the values of C for the isotropic case (a=0) for the same

cases, listed under the heading "this work." Also given

in Table VI are the values of ('predicted by the corrected
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spin wave theory and the hybrid method of Part (4), Sec-

tion C of this chapter. No values of p appear for the

latter two methods as applied to the linear chain, for

reasons similar to those given for the omission in Table

IV with respect to the determination of 4 [cf. Part (3),

Section D of this chapter]. This omission will be dis-

cussed further in Section E.

The total sublattice magnetization, determined by

either the modified perturbation theory or the corrected

spin wave theory, may be expressed in a form similar to

that in which the energy was expressed in Eq. (69), i.e..,

1 1
___1 -(Sro)2 (So)3 (88)

(1-a)2  d1l d 1 2  d1 3

(1-a) d2 1  d2 2  d2 3

(1-a) d3 1  d3 2

The terms common to D2, D 4, K,, and K2 are

dl (89)

1
d1 2

d0-1
d21 20
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y 2 - 48 % + 48
d2 2 -_ 32 1 2

which are determined from Eq. (83) and either Eq. (84) or

Eq. (85), or alternatively from Eq. (87).

In order to determine the power of the spin wave ap-

proach versus the modified perturbation theory, we also

include in Table VI, under the heading of "overlap," the

contribution to e which arises solely from the four terms

common to both methods, i.e.,

overlap = 1 - (dll+d2 1 )S'o - (d 1 2 +d2 2 )S 2

(90)

It is apparent from Table VI that the overlap between

the two methods consti~utes far and away the largest con-

tribution to the divergence of the sublattice magnetiza-

tion from unity in the three dimensional cases, Not quite

so strong a statement may be made for the two dimensional

cases, and the modified perturbation method seems to be

the only satisfactory approach for the one dimensional

lattice. Thus, both methods are roughly comparable in

three dimensions, and one could not hope to obtain very

different results for the ground state sublattice magneti-

zation by choosing one method in preference to the other.

The long range order parameter is larger in absolute

magnitude than the short range order parameter in almost
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all of the cases of the Tables IV and VI. At first glance,

it might be thought that ý should at all times be larger

than , because of the comparative distances over which

correlation is being measured. The fact that this is not

reflected in the computed values way be attributed to the

way in which our long range order parameter has been de-

fined. Our definition, Eq. (78), whichis the only one

available to our theory, is not the proper analog of our

short range order parameter, Eq. (72), to lend itself di-

rectly to a comparison with'Yj. This was pointed out in

Part (4) of this section when we derived an approximate

relation between the correct analog, Eq. (76), and Eq.

(78). For comparison with the short range order parameter,

we have included a table of P 2, Table VII, which is based
on the approximate relation, Eq. (79).

8. Comparison of the Theoretical Long Range
Order with Experiment

There are two experimental determinations of the

sublattice magnetization in real antiferromagnets in the

literature. They correspond to the measurement of the

sublattice magnetization in a body-centered cubic spin

5/2 system,34 (the magnetid lattice in MmF2),, and of the

sublattice magnetization in a simple cubic spin 5/2 sys-

tem,35 (the magnetic lattice in KMnF 3)'
The body-centered lattice, while of the two suýlat-

tice structure, has not been discussed heretofore because
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of its essentially different nearest neighbor structure.

In the three lattices which have been considered, ioe.,

linear chain, plane quadratic, and simple cubic, the posi-

tions of the nearest neighbors define an orthogonal coor-

dinate system, and hence the 8 are linearly independent.

This is not true of the 8 corresponding to the body-

centered lattice, and hence greater care must be taken in

determining the valuies of the sums over the reciprocal

lattice which lead from Eqs. (47) and (52) to the values

of the C2 and C4 of Eq. (54). Thus, substitution of

ýo = 8 in Eq. (54) does not lead to the values of C2 and

C4 which are characteristic of the body-centered lattice.

As a result, we omit discussion of this case here, except

to say that there is an apparent discrepancy between the

experimental result, (=1o00±0.02), and the spin wave pre-

diction,(e=0.976). This same type of discrepancy appears

in the simple cubic case, (KMnF 3 ), and here direct com-

parison with the theory as presented in this dissertation

can be made.

The experimentally measured sublattice magnetization

in KMnF3 has been determined to be p - 0o998 ± 0.015.

From Table VI, we obtain for the results of this disser-

tation, P= 0.977, and for the spin wave theory, e= 0.969.

The results of the spin wave theory are clearly in dis-

agreement with the experimental results, while the results

of this work lie Just outside the possible experimental
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error. With the calculation of additional terms of the

perturbation series, Eq. (82), it might be hoped p would

converge to a limit lying within the interval indicated

by experiment. That such is probably not the case is

shown by the following argument.

We consider the contribution made to the terms D2 and

D4, appearing in the perturbation series for the sublat-

tice magnetization, i.e., Eq. (54), by the terms of the

overlap, Eq. (90). Thus we have for D2 and D4 in this ap-

proximation, using the results of Eq. (90), and putting

S = 5/2, Ko =6,

D2 -- 11+ (s612 12 (91)

= 0.0178

and

4 Ld + (S o)2 22

#4 0.0050.

Comparison of these approximate values with the exact

values of Table V show D2 and D4 to be given correctly by

the overlap terms to within 2%. If we assume this rela-

tionship to hold for arbitrary Dn, then an upper limit to

the deviation from perfect order lies within 2% of the
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corrected spin wave deviation, and a lower limit to the

deviation is given by the present theory to fourth or-

der. Thus,

0.968 < < 0.977, (92)

Of course, Eq. (92) is by no means rigorous, but it seems

to reflect the general trend of the perturbation series

for the sublattice magnetization.

The disagreement of the sublattice magnetization

predictions of both the corrected spin wave theory and

the perturbation theory with those of experiment thus is

not resolved. Considerations of canting in IK4nF3Y as

well as of anisotropy, J.ail to account for the difference.

Canting has been shown to have a negligible effect on the

spin wave spectrum for the degree of canting present in

KMnF3 36 The anisotropy field, HA, in KMnF3 is of the

order of 4 oe, while the exchange field, HE, is of the

order of 1.6 x 106 oe.37 The relationship between the an-

isotropy parameter a, HA, and HE for the sublattice mag-

netization is given by

a= HAHE + HA A

Eq. (93) is based upon the way in which a, HA, and HE en-

ter into the spin wave expression for the sublattice
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magnetization. Thus a is of the order of 1O-6 for KMnF 3 ,

clearly too small to affect our determination of

Experiments involving the determination of the sub-

lattice magnetization for spin one-half systems, e.g.,

CuC12'2H2 0, where the theoretical deviation is much larg-

er, may make more clear how to correlate theory and exper-

iment.

E. Convergence Properties of the Ground State

Parameter Series Approximations

To begin with, almost nothing can be said about the

convergence of series for which the form of the general

term is not known. Of the antiferromagnetic ground state

parameter series, the form of the general term is known

only for the energy and short range order series corres-

ponding to the linear chain with spin one-half,19 In this

case, both series are very noisy, i.e., have no apparent

pattern for the sign of succeeding terms, and the conver-

gence properties are not readily assessable, For the

perturbation series developed in this dissertation, the

discussion of the convergence properties will have to be

limited to comparison with the spin wave series, along

with comments on the relative magnitudes of succeeding

terms.
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1. The Spin Wave Series

We list below the series approximations obtained

from the corrected spin wave theory for the ground state

parameters. The subscripts on the parameter symbols re-

fer to the dimensionality of the lattice, i.e., linear

chain, plane quadratic, and simple cubic.

E0  • 1 + o.7268(l) + o.1321(_)2 + ... , (94)
D-1

I= + o.316( ) + o.o25(- )2 +EOD2_2
D--2

E. --1 + o.194( 1 + o.oo9(l ) +

2OD=3

4D--2 1 + o.786(l) -o.756(1)2 + ... , (95)

- 1 + o.312(•) -o.168(1 2 +..,

1 - o.394(-) - o.ooo(_)2 + (96)
5D-2 2So +2., (

=D- 1 - 0.156(-') _ o .oooL_)2 + *O



2. The Perturbation Series

For comparison with Eqs. (94), (95), and (96),

we pick the spin one-half' and spin two cases from Tables

II and V.

E 1 + ~~(1-a) 2- 0.2500 (1-a)4+ .P

S=112 (97)

E 1 + 0.1429(1-a) 0 .0456(1-a) 4+
0O D=1

S=2

E -1 + 0.0333(1-a) 2 _ 0.0065(1-a) 4 +
E0 D=2

S=1/2

E 1 + oo61a)2+ 0.0078(1-a)4+

S-2

E 1+0.2000(1-a )2 -0081a)4+
0O D=3

S-1/2

E =1+ 0.0435(1-a) 2 + 0.0037(1-a) 4 +

S-2
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D f=2 I + 0.3333(1-a)2 - 0.0195(1-a)4 + 06
3=1/2 (98)

-~2 4
'1 =2 ~+ 0.0667(1-a) + 0.0234(1--a) +
D=2

2=2

D=3 =-1 + 0.2000(1-a) 2 0.0024(1-a) 4+ 00

S=1/2

J = - 1 + 0.0435(1-a)2 + 0.0111(1-a) 4+
S=2

eD=2 =1 - 0.2222(1-a )2 - 0.0356(1-a) 4

S=1/2 (99)

(ýD=2 = 1 - 0.0356(1-a)2  0.0136(1-a)4

S=2

CD=3 I - 0.1200(1-a) 2 0.0081(1-a) 4

S=1/2

C-3= 1 - 0.0227(1-a)2  0.0061(1-a)4  ..

S=2

The apparent convergence of~ the perturbation series is

relatively Laster than that of the corresponding spin

wave series when the spin is small. This judgment is

made solely on the basis of the magnitude of the ratio
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formed from the last two terms of each series. The nota-

ble exception to this rule occurs in the case of the sub-

lattice magnetization parameter, where the first order

correction to the spin wave theory is in all cases zero.

Higher order corrections are not necessarily zero, how-

ever, and if they were available, the relative convergence

could be discussed for this parameter in terms of them.



IV. PERTURBATION THEORY OF THE HEISENBERG

ANTIFERROMAGNET AT LOW TEMPERATURES

A. The Partition Function

We now turn to the consideration of the partition

function for a Heisenberg antiferromagnet. Kubo 3 8 has

given a perturbation expansion of the partition function

which is particuiarly suited to the extension of the pre-

vious treatment of the ground state to include excited

states as well. According to Kubo,

exp (-/H)= -• e ) (H1  E- )d2 f:Lý xp -HOm=O 1E H

(100)

where H = H0 + Hl.

1. Zero Order and Perturbation Hamiltonians

Since HO is an operator, we need a definition for

the operator 1/(E-%). We shall be concerned with the

trace of Eq. (100) with respect to a complete set of ei-

genfunctions of HO for which the definition of 1/(E-H0)

is immediate. If we identify the zero order and perturba-

tion Hamiltonians with the division of the Hamiltonian

used in the ground state perturbation calculation of Chap-

ter III, then we have the division indicated in Eq. (21).

79
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We may think of HO and H1 as expressed in lattice

space or in reciprocal lattice space, i.e., in the form

of Eq. (2), Chapter II, or of Eq. (22), Chapter III, re-

spectively. For convenience in defining a complete set

of eigenfunctions for H, we use the Hamiltonian in the

form of Eq. (2). For calculational purposes, however, we

will insert the transformation to reciprocal lattice space.

Thus the eigenfunctions of H0 all take the form

0 (n, n1 n 2 ) = Inn, n1n 2 > (101)

where In, nn 2 > represents a normalized eigenstate of

in which there are n deviations from the Neel state, n1

of them on sublattice #1, and n 2 of them on sublattice #2.

Thus nI + n2 = n. We do not here explicitly differentiate

among the many different configurations of the n1 and n2

deviations, although this difference will figure impor-

tantly in later calculations.

2. The Partition Function to Second Order

The trace of Eq. (i00) with respect to the states

of Eq. (101) is indicated by

NTr[exp(-ýH)] Z L- <n,n nln 2- exp(-)
rO n(1 n 2n=O nl+n2 =n (102)

x~[E 1  1~LdEnnx Z( H En,n n n>1
m=O
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We now propose to expand Eq. (102) explicitly in

terms of the operators D and U. Since U raises the num-

ber of excitations, n, and D lowers n, and because the

states of Eq. (101) are orthogonal in n, it follows that

all non-vanishing elements of the trace must have the num-

ber of D operators equal to the number of U operators.

Thus for zeroth order, we have no D or U operators. The

first order correction vanishes, and the second order

contains one D and one U operator. The third order van-

ishes, and the fourth order contains two D and two U op-

erators, etc. Thus

N 1Tr[exp(-/8H)] = nI= I <n, nln21 2'--ioexp(-E

niO n1 +n2=n (103)

x I7m 1

qMioE-H E-H0E -H

x Ml I~ 1 lJnn>

+ -_D I (

qqo J'12

C ) 1 (~ 1 ~

XPZo(E-• Ip D HO =(_i)qE -1~ + ... In,n nln>

in which the zeroth and second orders have been indicated

explicitly.
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The solution to Eq. (103) in zeroth order is identi-

cal with that of the Ising model, H = Ho + I. The fact

that we do not know how to write down this solution in

three dimensions will not present a great deal of diffi-

culty in the low temperature expansion to be derived from

Eq. (103).

In order to develop a low temperature expansion of

Eq. (103), we investigate it as a function of exp

since with l= l/kT, a > 0,

lim exp (-/2A/2) ---0 0. (104)

T--0

Since the states of Eq. (101) are also eigenstates of

S+ 1, we may re-express the zeroth order of Eq. (103),

Tr[exp(-/H) ]zeroth order (105)

N I, 1exp(-,6 E)in Z <n'nlnA•2--c-i',E-f.,. x dlnn>

n=O nl+n2 --n 1 2ErnWn 1n2

where En = E0 + n4/2. Evaluation of the integral yields

Tr[exp(-,e/)-zeroth order = exp (-0O){I (106)

+ exp(-A//2) I <l,nln2lexp(-3I)1)l,n1n2 >
nl+n2 =l
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+ exp- n ) =2I<2, n 1n 2IeXP(-fýI)l2,n,n > +

where the expansion in powers of exp(-ýA/2) has been made

explicit,

In the second order of Eq. (103), we may also re-

express the terms in a form similar to Eq. (105), but now,

for convenience of expression, it is desirable to place

subscripts on the operator I which denote the sequence in

which all operators, D, 1, and U, are applied. That is,

10 means that I is applied to the original eigenfunction,

in,n 1 n 2 >. 1 is applied after the operator U is attached

to In, nln2 >. Il1 is applied after the operator D is at-

tached to In,n 1n 2> , etc. Thus we have for the second or-

der correction,

N
< n, n n =I-- exp(-E) dE(1)

nO nl+n2 --n

1 1 1 nxE-En -10oE- En+2 1 En 0

= exp(-RE))<Ol[- D 1 2 U exp(-/! 0 )

+ 1_0) exp -161O))V O>

6+1 1-_
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+ exp ( /2) <,nn 2 [D exp (1- )nl +n2=l 1!-0)2

+/D(A+II)U exp(-AI0)]Il,nln 2 > + P

and

N
N I <n,nln 2 In - exp(?eE)dE (108)n= nl+n2 =n

1 1 1 n, ln2

E - En - IoUE - En- 2 - I_IDE - En - v0

= x(•n• • <2, n, n2l U exp (-13-l) D(--+'01_ii
=exp_(-_ )fnl+n2=2 )nn2  U

2,n,n 2>

+ exp(-/64/2) [ <3,nln2 JU exp(-ýlIl)-D 2
nI+n2 =3 (A+I 0 I 1 )

3,nln2 > + ..4 A

where we have carried out the expansion to the first power

in exp (-ý4/2).

Thus, collection all terms of Eqs. (106), (107), and

(108), and using the relationships

I10> = 0; I ll,nmn2> = 0, (109)

which result from the fact I measures the interaction
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between individual spin deviations from the Neel state,

and consequently requires at least two deviations to give

a finite measure. Eq. (109) will allow us to drop the

subscripts on I in the expression for the partition func-

tion below, since there remains only one position in which

I gives a non-zero result. Thus we have for the partition

function in the low temperature limit, and to second order

in D and U,

Trlexp (-&H)] to second order (110)

= exp(-Ao)fl = <0l[- D 1 2U +9D j7U]IO>
( +I) ,1.D

+ 2= <2,n,n 2 1UDn--&+I) 2,n, n 2 > + .. o

+ exp[-ý(Eo+4)J ]N + Z <l,n,n[- D U
2 n 1 +n 2 =n 2 (+I)2

+ Zh 7U] 1, nln2> + z <3,nln2 IUD 1 3, nn>n+ +n2=3 (n+I) 1

+ ... }

+ exp [-/3(E0 +,6) <2,n 1 n 2I1exp (-/9I)12, n In2 > +
1l +n 2=2

Eq. (110) may be simplified by noticing that:
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<0 D 1 WU0>= Ii <2,nln2 IUD 1 j2,nln2>, (IIi)
A+I) n , nI+n 2 =2 1 n

and

7-=1 <1,nIn 2D 1 DU1I,nln 2 >

n1 +n2=1 (+1)n

i <3.,nln 2 IUD 1 13, nln2 >.
n1 4n 2 =3 (,+I)n

Using Eq. (i1), we get for Eq. (110),

"Tr[exp(6H)]to second order (112)

1 +<O[U1 .0>
exp (-AE0)l ++<0ID A-- 1 Ui0> +I

+ exp[-Id(E 0+ A)]{N +/ X <1,nln2 D nD U

n1 +n2 =1

ll,nn 2 > +

+ exp [-(E 0 +&) <2,nln2 1 exP (7-/8) 12, n n 2>

+

+ ..0

3. Relationship Between the Partition Function

Expansion and the Ground State Energy Series

Examining the first term in Eq. (112), we note

that it appears to be a power series expansion of an ex-

ponential in which the argument is Just the ground state
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energy perturbation series derived in Chapter III, Eq.

(32).

<01 exp[-/8(EO-D( U + o..)]I10> (113)

= <0o exp (-/ýEO) [1 +--U +o..0>

In Appendix C, we examine the fourth order perturbation

terms of Eq. (102), and find that Eq. (113) is valid to

this order also.

Thus, assuming the complete validity of Eq. (113) to

all orders, the term which in zeroth order corresponds to

(-ý0E), goes over the exp( -IEground state)' which is to

be expected.

B. The Excited States

1. Perturbation Treatment for the General Case

Examining the terms in Eq. (112) which in zeroth

order correspond to exp[(-ý(E0 + ))]M, we find

n +n2=1<l nln2I2exp[-/[Eo+ - D(Zt-U .o]]llnln 2 >

(114)
nl =<l, nn 2 I exp [ (•(E0 +)] 1 +i•D1U

n 1+n2 =1 2) f(~I
+-

+ ...asspins 2>s

under assumptions similar to those leading to Eq. (113).
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In Appendix C, Eq. (1l4) is also shown to be valid through

fourth order.

Eq. (114) does not make plain the relationship of the

excited states to the ground state, but an explicit calcu-

lation will serve to do so. We take for the normalized

eigenstates 1,nln2 >,

ljlO> 1= SjO>= > l(.--)1/2 iexp lAJ)S lIO>, (115)
V21j S- A ( ~AJS

S1S+10>2 1 -(-9) 1/2Iexp(-I.Ak)S+A 10>.

Substitution of Eq. (115) into Eq. (114) yields

<+,n 1 n 21exp[-E + f] + &D-I+IU + ... 1 n 1nn 2 >
1 n2 (116)

exp[-,(E 0 + •)]fN S <0 IS+ -DLIm S- I O>Sm=O -I i

+ <01 A 2So> +

where we have made use of the Kronecker delta relation-

ships,

[exp(i(A-'J] (17)

Tkexp[i(A-A').k] =k6
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The validity of the binomial expansion of the term involv-

ing the operator I depends, of course, upon the condition

that the expectation value of i/A have a magnitude of less

than unity. For the states involved in Eq. (ll4), this

condition will be fulfilled except for the linear chain

with spin one-half, which we treat separately later.

The symmetry of the operators D, 1, and U with re-

spect to the sublattices indicate that both terms of the

sum over the reciprocal lattice in Eq. (116) are equal.

Therefore, we calculate only one of these, For the effect

of the operator I on USA•1j0>, we have by means of the def-

inition of I given in Eq. (20),

(-I)mSl Io< = (2J)mUS- 1.0> (118)
1 /1

+ (2~(mlJ(-)••

Insertion of Eq. (118) into Eq. (116), with the subse-

quent commutation of S operator through all operators

until it operates on SAl, and the final evaluation of the

resulting terms, yields

Z <l,nln2jexp[-fS(E0 +n)]I +/I D -- +U + °o.)llnln2 >

nl+n2 =l (119)



9o

•N<DU> 4j 2(1-a)2f

exp[~~E + ý)]N + N13[lU +

p ~8j3(l-a)2
+ _J 1-a 2(S( (SO)N 2 A_-2SJY (a-J ( o)1- (,T 0)

0
0~ N

Reversing the process indicated in Eq. (114) allows us to

write for the energy of the first excited states,

Efirst excited states = N <fU> + (120)
A-2J

(1-a)2 (1-a) 2 (So)(•) 2 Y2

+2 _ýWCYOTl - 2((--l N)X .Y_ +
A0

Eq. (120) indicates that there are N first excited states,

each of which lies near the ground state, as indicated by

the presence of the ground state energy perturbation se-

ries appearing in Eq. (120)o The incremental difference

between the ground state and the first excited states is

given by the terms proportional to A/2 in Eq. (120).

There are N/2 different increments, each characterized by

a different A. Thus each X corresponds to a doubly degen-

erate energy level, The dispersion relation for the first

excited states in this second order approximation is then

given by the relationship between the incremental energy

and the reciprocal lattice wave vectors A.
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AEfirst excited states (121)

A~ + (1a)2 (1-)2 (A) 2+
2 + 2 2S l2Sl) +.So-1) + *, 2

2. Comparison with Spin Wave Theory

The first excited state energy derived by means

of the spin wave theory is given by1 1

21/2
fEfirst excited states = [l,- 2(1-a) 2 (122)

0

Examination of Eq. (121) for large spin,(the condition of

validity for the spin wave theory), reveals Eq. (121) to

be the first two terms of a binomial expansion of Eq.

(122). This is precisely the kind of relation which we

found for the comparison of the perturbation and spin

wave treatments of the ground state. There is an impor-

tant difference, however, which affects the usefulness

of Eq. (121).

The relative merits of the spin wave approximation

versus the perturbation technique for the determination

of the low temperature properties of real antiferromagnets

depend upon the amount of anisotropy present. The very

nature of the perturbation technique indicates its appli-

cability to antiferromagnets with strong anisotropy. The

zero order Hamiltonian represents the complete suppression
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of any contribution from the off-axis components of the

spin, and in order to represent the isotropic Hamiltonian,

the contribution from the off-axis components must be com-

pletely restored. In the ground state problem, it was un-

necessary to go this far in order to achieve an excellent

representation for the energy, and relatively good repre-

sentations of the short and long range order. In the case

of the excited states, however, because of the Boltzmann

factor, greater importance is attached to the lowest en-

ergy eigenstates of Eq. (121), and it is just these states

which are most affected by the presence of an anisotropy.

A finite anisotropy, no matter how small, removes the de-

generacy between the lowest of the excited state energies

and the energy of the ground state, thereby introducing an

energy gap. 39

The ground state is adequately represented by a few

orders of the perturbation because its deviation from the

Neel state is determined by a sum of unweighted contribu-

tions from all of the modes of the lattice. The term "un-

weighted" is used here to indicate the absence of a Boltz-

mann factor in the ground state sum. The relatively poor

representation of the adjustment in the ground state ener-

gy via zero-point fluctuations associated with a long

wavelength, which give only a small contribution to the

total adjustment of the ground state energy because of the

nearly perfect alignment of spins in a long wavelength
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mode, are easily compensated for by the much more adequate

representation of the short wavelength, high energy zero

point fluctuations. This property of the perturbation ex-

pansion is of little avail when it comes to determining

the low temperature behavior of an antiferromagnet, where

it is the low energy, long wavelength modes which are most

important.

The important properties of both the perturbation and

spin wave treatments of the excited states can best be

seen when compared with the one exact treatment for these

states. This may be done as soon as our treatment of

the general case is extended to the case of the linear

chain with spin one-half.

3. Perturbation Treatment for the Linear Chain

with Spin One-Half

We now return to the development of our perturba-

tion series at the point of Eqs. (107) and (108). Here

we must regard the fact that for some states of the linear

chain coupled with spin one-half, all three energy de-

nominators are equal. This is reflected in the fact that

the binomial expansion used in Eq. (116) is not valid for

these states, and consequently the expression in Eq. (119)

cannot be evaluated for S = 1/2, Y0 = 2. Instead of tac-

itly assuming that the middle energy denominator of Eqs.

(107) and (108) differs from the other two, we evaluate

the integrals in the following manner.
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N
Z Z <n, n n fgexp(- EdE (123)

n=0 nl+n2 =n
1 1 1

-HO E - H - -I- E H n'nln2 >

N Z
I ~ 21T exp (-AE) dE

n-=o n +n2 -n(E 0 +I)2
1 1

xn2)h D 1 n 1 1 n, nln >
xDE[E +2,)6 + I1] E -( +I0)

- ~ E + iT)T 2

N ~~ nIn -e 1 p'[E -(Eo2t~ + n2A IU+ (n+2) Ii(

Nep -xp[ 2 411)]•Io)

eon4n 2 + + I - o O

-•exp [-/(E0+--!+I) ], }n l2

[EO + -• + 10 O 2 1)]2

which, in the limit as 1 + A--* iO, i.e., when all three

energy denominators are equal,

N
Nlim E n <n,n 1 n2 I2DU

I0-IAn= 1 2
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xf +-/~xP[~(Ej410 )]

fE 12+ 10 - (E0 4n +1 ÷ 1)J 12

In place of Eq. (108), we get

N
limw nl I <n,nln2 UD (124)

10 +A-v6-1l n 1 +n 2 =n

x {E0 -• -(Eo+12+Io)] )•fn,n nln>,

EO+ 2+ 0 - (EO(n2 1)+1

The term with n = 1 in Eq. (123), and the term with

n = 3 in Eq. (124) provide us with the entire contribution

which is proportional to exp[-3(Eo+4/2)]. In the limits

indicated in Eqso (123) and (124), this contribution van-

ishes. The vanishing of this term corresponds to the

omission of the term in Eq. (119) which is proportional

to (A-4J)-l. Thus we arrive at the following instead of

Eq. (121)

AE = 2J[l + (1-a)2 - (1-a) 2 42] (125)

In Figure 2, we show the dispersion curves for the spin

one-half coupled linear chain in this approximation, the

spin wave approximation, and the exact solution. From

Figure 2, it is apparent that Eq. (125) best approximates
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the exact solution in the short wavelength region, i.e.,

X161 = 1T/2. This bears out what was previously said

with regard to the treatment of the ground state. For the

treatment of the excited states, however, the large gap

which is evident in Figure 2 between the lowest states and

the ground state in this order of the perturbation, pre-

cludes the use of this theory to obtain meaningful low

temperature thermodynamic behavior for real antiferro-

magnets. Higher order corrections are not likely to close

this gap rapidly, in the sense that the presence of even

a small gap profoundly modifies the low temperature be-

havior.



V. SUMMARY

Perturbation series for the ground state parameters

of the Heisenberg antiferromagnet, i.e., the energy, short

range order, and long range order, have been presented in

a quite general form through fourth order in the perturba-

tion Hamiltonian. The final zero order Hamiltonian is the

Ising model, H - 2J - S'S', and the final perturbation
<jk> J k'

Hamiltonian consists of the off-axis components of the in-

teraction. The problem of the N-body divergence, present

in any straightforward Rayleigh-Schrodinger perturbation

treatment based on the Ising model, has been handled in a

unique way. The choice of an initial zero order Hamil-

tonian other than the Ising model makes possible the gen-

eration of ordinary Rayleigh-Schrodinger perturbation

series in which the N-body divergence is cancelled in each

order, thus satisfying the requirement that a systematic

method be used to eliminate non-physical contributions

from the series. After the N-body divergence problem has

been handled using the initial zero order Hamiltonian, a

way is found to predict certain infinite classes of terms

belonging to the original perturbation series. The inclu-

sion of these terms in the perturbation correction is

shown to be equivalent to a shifting of the definition of

97
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the zero order Hamiltonian to the Ising model,

The perturbation corrections to the energy* short

range order, and long range order of the Neel state are

exhibited as explicit functions of the spin and number

of nearest neighbors, and also of an anisotropy parame-

ter which essentially gives the order of the perturbation

series. For comparison, equivalent expressions are de-

rived for the standard spin wave treatment of the ground

state. This procedure allows a complete analysis of the

relationship between the two methods, On the basis of

this analysis, it is found that the present method is

superior to the spin wave method for the treatment of the

ground state short range and long range order parameters

in all one dimensional problems, and that it holds an ad-

vantage also in the treatment of the spin one-half cases

in two and three dimensions.

Experimental determinations of the sublattice mag-

netization in real antiferromagnets show a slightly larger

value for the sublattice magnetization of the ground state

than that predicted by either the perturbation technique

presented in this dissertation, or the spin wave theory.

Though the results of the perturbation treatment are clos-

er to the experimental findings than are the results of

the spin wave theory3 complete confidence cannot be placed

in the assumption that higher orders of the perturbation

will not further lower the perturbation results. On the
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basis of the analysis of the relationship between the two

methods, it is reasonable to believe that the exact sub-

lattice magnetization for the Heisenberg model ground

state lies somewhere between the spin wave prediction and

the perturbation prediction.

The treatment of the first excited states of the

Heisenberg antiferromagnet by means of the perturbation

theory show the anisotropy to have a strong influence up-

on the energies of the lowest of these states. Thus, be-

ginning with a zero order Hamiltonian which is very aniso-

tropic, and calculating only a few orders of the perturba-

tion series, an adequate representation for the energies

of these states is not found. It is concluded that one

should rely on a continuation of the spin wave treatment

of the states in the manner presented by Oguchi 3 2 for any

improvement in the representation of the low lying ex-

cited states.
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Linear Chain

Plane Quadratic

I I

v•- ----

Simple Cubic

FIGURE 1. Classical Antiferromagnetic Ground States
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This work
-- Spin wave

Exact

E

NbN

FIGURE 2. Dispersion Relation for the Linear Chain with
Spin One-half
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TABLE I

Qualitative Results of Previous Methods Used to Compute the

Sublattice Magnetization of the Ground State

Is there a Plane
Finite Sublattice Linear Chain Quadratic Simple Cubic

Magnetization? gý-/2 S>l/2 :=1/2 S>112 S=1/2 S>1/2

Anderson No No Yes Yes Yes Yes

Kubo Yes Yes Yes Yes Yes Yes

Kasteleijn No

Taketa and No No
Nakamura

Marshall No No No

Fisher Yes Yes

Davis Yes Yes Yes Yes Yes Yes
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TABLE II

The Perturbation Correction to the Energy

02

lattice S=1/2 S=l S3/2 S=2

Linear Chain: This Work 100000 0.3333 0.2000 0o1429
Linked Cluster 1.0000 0.3333 0.2000 0.1429

Plane Quadratic: This Work 0.3333 0.1429 0,0909 0.0667
Linked Cluster 0,3333 0.1429 0.0909 0o0667

Simple Cubic: This Work 0.2000 0.0909 0.0588 0°0435
Linked Cluster 0.2000 0.0909 0.0588 0°0435

c4

Linear Chain: This Work -0.2500 0.0782 0M0591 0,0456
Linked Cluster -0.4590 0.0292 0.0284 0°0226

Plane Quadratic: This Work -0,0065 0.0251 0M0099 0.0078
Linked Cluster -0.0098 0.0123 0,0098 0,0078

Simple Cubic: This Work -0,0008 0o0055 0°0045 0.0037
Linked Cluster -0,0015 0,0054 0,0045 0.0037

E/E0 (a =0 )*

Linear Chain: This Work 1,7500 1,4115 1.2591 1o1885
Linked Cluster I 1 5410 1,3625 1.2284 1H1655
Linked Cluster 1I 1,7363 1,3567 1.2287 1.1686

Plane Quadratic: This Work 1.3268 1.1680 1.1008 1,0745
Linked Cluster I 1,3235 141552 1o1007 1X0745
Linked Cluster II 1.3281 1,1563 1,1027 1,0765

Simple Cubic: This Work 1.1992 i10964 1,0633 10472
Linked Cluster I 1.1985 1,0964 1,0633 1,0472
Linked Cluster II 1,1996 1.0973 1,0643 I.0481

The greater the magnitude of this term, the lower the cor-
responding energy, since E, E0 < 0,
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TABLE III

Comparison of the Perturbation and Spin Wave

Corrections to the Energy

E/Eo(a=O)

Lattice S=1/2 S=l S=3/2 S=2

Linear Chain: This Work 1.7500 1.4115 1,2591 1.1885
Corrected Spin Wave* 1.8589 1,3964 1)2569 11o900
Hybrid Method 1.7651 1.4485 1.2903 1.2144

Plane Quadratic: This Work 1.327 1,168 11o01 1.075
Corrected Spin Wave 1,341 1.164 1.108 lo081
Hybrid Method 1,322 1.177 1,109 1081

Simple Cubic: This Work 1,199 1.096 1o063 1o047
Corrected Spin Wave 1.203 1.099 1o066 1,050
Hybrid Method 1.199 1.099 1,066 1.049

Spin wave approximation + first order correction.
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TABLE IV

Comparison of the Perturbation and

Spin Wave Corrections to the Short Range Order

Lattice S=1/2 S=l S=3,2 S=2

Linear Chain: This Work 0°7500 0o4321 0.6227 07203
Plane Quadratic: This Work 0.686 0.782 0°879 0O910

Corrected Spin Wave 0.970 0.796 0,822 0.850
Hybrid Method 1.038 0.763 0.822 0.851

Simple Cubic: This Work 0.802 0.907 0,928 0o945
Corrected Spin Wave 0.856 0.886 0o915 0.933
Hybrid Method 0,877 0.903 0.916 0.933
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TABLE V

The Second and Fourth Order Corrections to the

Long Range Order

D 2

Lattice S=l/2 S=l S•3_2 S=2 S=5/2

Linear Chain 1.0000 0.2222 0.1200 0.0816
Plane Quadratic 0.2222 0.0816 0.o496 0.0356
Simple Cubic 0.1200 o0o496 0o0311 0.0227 0.0178

D 4

Linear Chain 0.2500 0.1433 0o0687 0.0458
Plane Quadratic 0.0356 0.0270 0.0181 0.0136
Simple Cubic 0.0080 0.0107 0.0083 0.0061 0.0050

p(a=0) ,

Linear Chain -0.2500 0.6345 0.8113 0.8726
Plane Quadratic 0.7422 0o8914 0.9323 0,9509
Simple Cubic 0.8720 0.9397 0.9606 0.9712 0.9772



107

TABLE VI

Perturbation and Spin Wave Corrections to the Long Range

Order of the Isotropic Ground State

p(a=O)

Lattice S=1/2 S=l S=3/2 S=2 3=5/2

Linear Chain:
This Work -0.2500 0.6345 0.8113 0.8726

Plane Quadratic:
This Work 0.7422 0.8914 0o9323 0.9509

CorrectedlSpin Wave 0.607 0.803 o0869 0.902
Hybrid Method 0.597 0.801 0.868 0.902
Overlap 0.752 0.893 0.933 0.951

Simple Cubic:
This Work 0.8720 0.9397 0.9606 0.9712 0.9772

Corrected Spin Wave 0.844 0.922 0.948 0.961 0.969
Hybrid Method 0.848 0.922 0.948 0.960 0.969
Overlap 0.868 0.940 0.961 0.972 0.977
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TABLE VII

The Square of the Long Range Order Parameter for Comparison

with the Short Range Order Parameter

2(a-0)

Lattice S=1/2 S=l S=a3/2 S=2

Linear Chain: This Work -- 0.403 0o658 0o761

Plane Quadratic: This Work 0.551 0.794 0.869 0.904

Simple Cubic: This Work 0.760 0.884 0.924 0.943
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APPENDIX A

In this Appendix we calculate the sixth order energy

correction. For the general case with arbitrary spin and

lattice, we proceed as far as the sixth order equivalent

of Eq. (52), Chapter III. For the case of the linear

chain with spin one-half, we continue on to determine ex-

plicitly the sixth order energy correction, which is found

to be identical to that found for this case by a different

method. 1 9 The desirability of such an effort lies with

its implication that we have indeed recovered the Ising

model as a zero order Hamiltonian, at least through six

orders of the perturbation.

We begin by considering Eq. (53), Chapter III. By

applying the relationships indicated in Eq. (40) and (51),

the operators I which are superscripted with the symbols

p, r., s, and q may be replaced by the explicit expression

of their effects upon the U and D operators of the matrix

elements. In performing this replacement, we are aided

by the Hermitian property of the matrix elements, in par-

ticular by the fact that <OIDIPDIrj = (IIrUIPUIO>)+. Fol-

lowing this replacement, the sums over p, r, s, and q may

be performed to give in place of Eq. (53),
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6 .
El) ( (Al)

2 > 2 UmUU >
m +D]m3ý +< 3<' 'RD >

4 2 <D31UU m ULI > 2>

+ 3m

(13j/A) 2 D3m~ j 12Ul '2>

+(1-477Z) (1-3J/A) 3

+ 3<D7D29UIrnDU 1 2 UI 2>Rl

(13J6 2 3 R

+ 3<Dy8DyI8U'ýmDU12,U, 2>RI>

Here we have subscripted the D operators with the sub-

scripts 77' and. 881. These have an entirely equivalent

meaning with respect to the Dl operators as the 11' and
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22' subscripts have with respect to the U operators. Sub-

scripts utilizing the intermediate numbers 33' to 66' will

be needed when the operator im is replaced.

In order to perform the sum over m, we need to know

the effect of IM on U3 10>, UU1 U1 1j0>, UU1 2 1U1, 2 1O>, and

DU210>,U DUIU1 1>1 DU1 2 1U1 210O>. This is determined in a

manner analogous to that used to determine the effect of

the operator Im on u210>, that is, by applying successive-

ly higher powers of the operator I to each term. As we

saw in the series of equations leading to Eq. (51), i.e.,

Eqs. (42) and (44), each application of the operator I

serves to introduce new terms derived from the old by link-

ing two operators with a new subscript, as in Eq. (42) and

Eq. (44). When all operators have been linked with a sub-

script, e.g., U1 2 ,U1 , 2 10>, Eq. (45), the resulting com..

pletely linked function is an eigenfunction of I, and the

production of new terms ceases upon further application

of I. There are sixteen different operators which can be

formed from the basic operator, U3 , by the linking process.

We list them, utilizing an extension of the subscript no-

tation begun when the different linked operators formed

from U2 were defined. For clarity, we follow the list with

the explicit expression for some of these subscripted op-

erators, the definition of the others following directly.
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(A2a) U3,9

(A2b) Uulu.u1
(A2o)UU2U1-

(A2d) 2u11 1-

(A2e) 2'2U.

(A2f) U llt

(A2g) U3U12 13 1U1 12,

(A2h) U111U1-

(A21) 3U312-

(A2J) U23 1U12 IU1 13 s

(A2k)'U4U23U14

(A21) U34U122 31U1 124:,1

(A2m) U4U234l2

(A2n) U1111U14

(A2o) U345j5 U 12 13:5U1 .124,

(A2p) U3*4 1516U12 13:5U1:2 41j6

The definitions of tIU 1 U1  and UU1L21 Ul1 2 being simple exten-

sions of U1U12 and U 12 1UV 1,2 whose definitions were given

in Eqs. (413) and (415), respectively, we begin with the

definition of U2U1 U1I2 ,.

u uu 1 2 O> = (.j 2j3 (1-) (A3a)
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u2u2 2 O> =(_g)2j3 (1-a)3  YS Y ' ' (A3b)

u u12 u O> = (.ý) 2j3(l-a)3  T Z (A30)

u3u12 '31U1121o N (C-J(la) Z ie A3d)

10>,

= 3(1)J(-a)3 6 ~~Y

(A3e)

We are now in a position to express the application

ofi to U3I> uu 1 O>, and fJ12U 11 O[>, in terms8 of a

linear combination of functions made up from the operation

of Eqs. (A2) to the Neel state, By successive application
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of' the operator I, we determine that,

InU-3Io> = (-2J)m{3rn1 0> + 6(4m-3 m)UU1UljO> (A~l)

"+ 3(5m-2.4sm+ 3m) (UU121UI1 21 0>+u 2ulull,2 10>

+U 2 1U12U1 t jO>+2U2U1 21 U1, 10>)

"+ 2(6m-3 95m+3 .4m-3m)(3U3U1 21 31Ul12 JO>

+3U3 tul213U11:J0>+3U23 U 13 U1121j0>+U231U121U1 13 10>)

"+ 3(7m-...4 6m+-695m-4.J4P+3m) x (2U341U1213 ,1U 2410>

"+U 3 4JU2 12 31U1,2 41.jO> + U341U121314Ul'2 l0>

"+ u3141u1213u112410>)

"+ 6(EP-15 . * 0 6m-10 5m+5 Lm-3m)

X(U34 -151u121315U1124f 0>)

x (U34'5 '6U12 '3t5ul'2 461.6;IoK.

and for the operation of' I"m onto uululljo>, we determine

that

Imu U1 1,I> - (-2J)mL4InUJu~l,to> (A5)

+ (5m-4Lm)(UUT 1 21U1 1210>+U2 UlUl' 2, Io>
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+U 2,U12U11 I0>+2U 2u12 2U1, Ia>)

"+ (6m-2.5m+Lm)(3U3 U12 '31Ult2Io>+U3 i 3U1213U112Io>

+3U231U13U" 11 0,I>÷U 3 U12 U 1 1>

"+ 2(7m-3.6m+3.5 M-4m)(2u341ul213 'ul12 41o>

+U3 41 U212 31Ul1 2 411 I>+U34,U1213,t~Ul 12l0>

+U3 14u1213ul1 2410>)

"+ 5 (8m-4.Yým+6.6m-Lt, 5m+IJm)U 34,5 1Ul2131 5Ul, 2ido>

"+ (9m-5 .8m÷10 711110 6m+5.5m-m)

"x (U3i4'150 121315u112461IO> )I.

Finally, for the operation off Im to uu12 ,Ul121o>, we get

ImUU12,U1 1210> =- (-2J)$m{5 UU121Ul?2I O> (A6)

+ 2(6m-5m)(U 3U1213 Ul'2IO>+U31 U121 3Ul1 2I0>)

+ (7m-2 6m+5  m)(2 41 2 13UU12j0 >

+U 34U1 21 21 Ul1 2 4~, f>+2U3L4,U 1213 t4UlI 2f0>

+U 3 14U1213 U l 24l0>)

+ 4 (8 m-3 yIX1+65m 3 4m 5 m)Ul2,,UU,1O>

+ ( 9m48+.mL 4.6m+5m)U4 ,56m+ Ul35u,,26 l>}
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For the successive application of I to the functions

DU 210>, DUIU, 110>, and EUI 2 ,UI, 2 0>, we cannot use the

definition of I given in Eq. (20), Chapter III, since it

was defined only in terms of its application to U-like op-

erators. If, however, we first commute the D operator

through all U-like operators until it operates on the Neel

state, we are left with functions which involve only U-like

operators, i.e.,

ImDU2 10> = Im[ 2 <Q>UfO> + RIO>] (A7)

= 2<Q>UIO> + RIO>; m = 0

= (-2J)m[2<Q>UrO> + R' I0>]; m 0

where

R1I o> = ()j3(-a)3(A8)

P I
- + )(SZ

2(S- )+ )(s+ )(S+ )(s-

+~~ 2+-)

'Y1 ) ( (S_2') (s_22,_'2_(2)

+ 8()- 1 / 2 (S- + sz
-2 02'-?2

- 8() • S• k(• +, )(S ,_ _V • )(3
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+ 4(')-i(S- -+

In order to simplify the expression of the results

which follow, we introduce the following abbreviation,

DU2I0>(I) = [2<Q>UIO> + R'1O>1. (A9)

For successive applications of I to DU1 U1I,10>, we get

ImDUlU1, jO> = Im[2 (2 )ýO<Q>UjO> + Rn,1 (o>] (AlO)

= DU1 UU1I 0>; m = 0

= (-2J)mDU UIO0>(1); m # 0

Since all U-like operators are maximally connected

in DU1 2,U 1 ,210>, we get

I mDU 12 1U 1 1 2 10> = (-2J)mDUI 2 ,Ul,210>. (All)

The insertion of Eqs. (A4)--(A7), and Eqs. (AlO)-(All)

into Eq. (Al), with the subsequent summation over the in-

dex m, results in the sixth order analog of the fourth

order expression given in Eq. (52), Chapter III. Thus we

have completed the first phase of the Appendix.

The second phase consists of determining the explicit

sixth order energy correction to the linear chain coupled
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spin one-half. The first step in this operation is to

write out the results of the summation over the index m

for those matrix elements which contribute to this case.

If, after the summation over the index m, a matrix element

has a coefficient involving the factor (1-4J/A)-l then

the corresponding matrix element must be null for the case

of the linear chain with spin one-half. If this were not

the case, then the perturbation series would diverge,

since (1-4J/&) = 0 for this case. We prove this for two

matrix elements in Appendix B, and assume it for the rest.

The summation over the index m for the terms contributing

to the sixth order energy correction under the. above as-

sumption thus yields

E(6-a) 6 1 <D3U3 > + 4(J/A)(2-5J/')<D3 UUIUl'>R

- 12 1 ( l-2/jA) 5  (l-3J/&)(l-8J/3&)(l-2J/A) 5

(A12)

8/3 (JAN)2 (2-5J/A) [ <D3 U2 UU 1 , 21'>R + <D3U 2 'U1 2 U1 i>R

+ 2<D3 U2 U1 2 , U 1 >R>

+ (1-1oJ/3ý) (a-3J/6) (1-aj/&)(a-2J/A)5

4 (J/A) 2<D7D7 IDUU1U1,>R

(1-3J/A) 2 (l -8J/3&) (l-2J/A) 4
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8/3 (Jl/) 3 [ <D7 D7 , DU2 U1 U1 '2'>R + <D7D7 ' DU2 'U1 2U1 '>R

+ + 2<D7D7'DU2 Ul 2 'UI'>R
+ ~~( 1-10oJ/3,n) ( 1- 3J& )2 ( l-8 j/3A) (l1-2J/a)4

1 <D 2UDU2>R 2(J/a)<D2UDU 2>R(1)

Z5f( 1-2J/A)< zF UDll> (1-2J&)5 UD 1 1

S(J/A) <D2UDU lU, 1>R 8 (jl.)2 2<D2 UDUlU1, >R (1)
++

(1-3J/A) (l-2J/n,)4 (l-3J/&) (1-2J/,L)5

4 (J/,,) 2 <D7D I UDUIUI, >R 8 (J/A) 3<D7 D7 ,, UDUUIR(1)

(l-3J/A ) 2 (I-2J/A) ( +

There are apparently fifteen matrix elements to com-

pute in Eq. (A12). We can use the Hermitian property of

the matrix elements to reduce the number of elements, since

they are not linearly independent. Using the relationship

<O11 3I - (IU 3 jO>)+, along with Eq. (A4) with m = 1 and Eq.

(A5) with m = 1, we obtain

<D3 1UUlUI,>R = (-2J)f3<D3UUlUl,>R + 6<D7D7,DUUlUI,>R

= (-2J)f{4<D3UulI,>R + <D3UUI 2 'Ul' 2>R (A13)

+ <D3 U2 UlU!'2'>R + <D3 U2 'Ul 2 UI'>R

+ 2<D3 U2UlI 2 Ul'>R}"
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For S = 1/2, f0 = 2, Eq. (A13) yields

<D3 U2 UIUI, 2 ,>R + <D3 U2 ,Ul 2 Ul,>R + 2<D3 U2 UI, 2 ,UI,>R

(A14)
6 <DTD >DUUIUI,>R - <D3 UUIUI>R,

since <D3UUI 2 ,Ul, 2 >R = 0 for this case. This is one of

the matrix elements which we show explicitly to be null

in Appendix B.

Using the same Hermitian property and a combination

of Eqs. (A4)-(A6), we obtain the following two equalities,

<D3 IU 2 U1U1, 2 ,>R + <D3 IU 2 ,U1 2 UI,>R + 2<D3 IU 2U12,U,>R

= (-2J)f5r< 3 u 2uUlh2 ,>R + <D3 U2 ,Ul 2 Ul,>V(IR 5)

+ 2<D3 U2 Ul 2 ,Ul,>R]

+ 2[2<D3 U3 U1 2 , 3 ,Ul, 2>R + 2<D3 U3,U12,3U1,2>R

+ 3<D3 U2 3 , U13U1 12 1>R + <D3U23 ,U1 21U1 ,3>R]3

= (-2J){[>D3U2 UAIU,2 ,>R + <D3 U2 ,U1 2 Ul,>R

+ 2<D3U U2U12,U,>R]

+ 6[<D7 DT7 ,DU2UU1 12,> + <DYDT, DU2 ,Ul 2UI, >R

+ 2<D7D7 ,DU2U1 2 ,UI,> >J.
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Since for the case of the linear chain with spin one-

half we have assumed the following null relationship,

2<D3 U U > + 2<D3UU (A6)3 1l0 2,3 1 1 ,U'lUlt 2>R 3 A6

+ 3<D3 U2 3 ,Ul 3 Ul, 2 1>R + <D3 U2 3 ,U1 2 ,Ul, 3 >R = 0,

we obtain for this case,

<D7DV,DU2UlU1, 2 ,>R + <DfD7,DU2,Ul 2 UlI>R (Al7)

+ 2<D7DYDU2 Ul2 ,Ul,>R = 1/3

= 1/3[ <D3 U2UlU12 ,>R + <D3U2 ,Ul2Ul,>R

+ 2<D3 U2U1 2 ,Ul,>R].

With the reationships Eq. (AI4) and Eq. (A17), the

number of independent matrix elements is reduced to nine

for Eq. (A12).

The first step in the calculation of these nine ma-

trix elements is to commute each D-like operator through

all U-like operators until it operates upon the Neel state.

The results are then given in terms of the commutators be-

tween D and U as defined in Chapter III, Section A, Part 2.

It should be remembered that the subscript R on the matrix

elements indicates that all terms proportional to powers

of N greater than one are to be disregarded, as shown in
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Chapter III, Section A, Part 2. Thus we get for the nine

matrix elements of interestb,

<D3U >R 2<RR> +<V>,(Al~a)

<D3UU1ul,> = 6(-9' 0 <F><Q> + <RRl>+< + l>+ t>

(Al8b)

+D D < 1 7 < 1 1 +(ý)OF>Q

+ ' U 1R UR 1 1>R N + 7<l't

<DUD>R=<R>,(Al8c)

2 ?2 2< +
2<DJ +Dl~Ž 4 R()0 F<~ + RR 1 >,(Oe

""D<RIUD771I R= 111 <><> + <R 17 )2I> +<Qii' 3 +

<D 2 UnU2>1= <R+R>, (Al8g)>R

<D~nu>1 =D 2(-9' 0<F><Q> + <R+lf> (Al8h)

<DD(i) YO Q + 4( 2)22 <Q3+ <R + IR>'

(Al8i)
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To complete the evaluation of these matrix elements,

the commutators of Eqns. (18a-i) are replaced by their ex-

pressions in terms of spin operators, being careful to ob-

serve the linking of operators indicated by the subscripts.

The resulting general expressions are then,

<o3U3> (- 6 x ( 6 (15 o2-45Y(0 +4°)
<DUR 26 - (2)2 x 2(SO) 4

00 0 (Al9a)

_ 216y)5 -_ + 24(SYo)2 2+
0 YO

- 54(S'o) +

3 ýT6 (1-a) 6 ,Nýb' 6 x 6(S(6(l
<DlUUIUI >R -2 -)2 x6(Sýo) (A19b)

0

6 03±+18602-63ý'0+49
x 6(SK0 )6 1O.4I]

2yO3+16(O2-11ýO-7

- 12(SŽ$o) 5 [ 0 016 3 0

+ 6(s(014[12K0 2 +21r0-21

+ 0) 1 - 54(S~o) 3  + (S o

0

<D7D7(D'' > 20 6 (19c)
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To complete the evaluation of these matrix elements,

the commutators of Eqns. (i8a-i) are replaced by their ex-

pressions in terms of spin operators, being careful to ob-

serve the linking of operators indicated by the subscripts.

The resulting general expressions are then,

<D3 U3>R = (a) 6 (No26 x 12(S0)6 (15Ž0 2 -4500. 4 ( a)

a 0 (Alga)

- 216(sy~ 5 1 + 24(SŽ,)
_0 !2 2 3o+Y

- 54(S'(o) + 9},

6 NCo 6 x 6
<D3 UUlUl,>R 2.o 2-- x 6(s o (Al9b)

0

6rK 3+l8 2_63ro+49
x 6(SKo) 1o4 0

_~~ To -3 +.- L 6 ,ý 2_o3+•( 6ol•o-7
- 2(SKO) 5 1 0 0-1

+ ( •o 4[12' 2+21ý0-2
+ 6(S2(04 - 54(S3o)3 +(SXo2

0

<D7D7,DUUIUJ(1-a)6 2 0 (19c)<T7 7'lDU11'>R - (• 2(1c
0'o
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x + s~ 6 0- + 32~ +3 13 2 -351 r + 203

00

+ 4 6U0/2 + 147YO - 14 3+ky~

____ ___ ____ __2 - +4 (s(yS) 0 )2J

<D2UDU2> = (1a 6  N?' 6(so)(ld
>R YO2 20~)2 0)'2 (l

(~y 2 -45,)(+4o) -4-1Y)

0 0y

<2 UllR -
6 (1-a)6 Ný 6  (l

00

8 (,, ) ,ýo +6K - 6 3 + 6(ý049H K

0 8(s) 2 X+ 2

-8(0)3 + (SýO/)2
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<D 7 )r(UDU lUI> R 2 2 ý6(A19f)

`0

4~ + + 18f 2 - +6

2) h 5 Y 0  + 3 &

-o 3 + 3ý3 0 )

1~6(sK0
6  48 (SX )5.

0 22
0r

6 +) + ~ 2-66
0

Y4 0 0
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- 8(S4o)3 + (Sy'o23,

<D7DUDUIUl,>R) 6-7 111RYO,2 2--0-2 (Al91)

ý0
x{<4(S•0)6 •0 + 6•'3 +30 - l8•0+ 9

-16(SU0)5 YO 2 + 3K0 - 3 15O2 + 30-

- (+ 4(ss)4 5 + 3 5oýO2 YO 2
- 8(sro)3 + (Sýo12,.

Putting S = 1/2 and YO = 2 into Eqs. (Al9a-i) and

using Eqs. (Al2) and (A17), provides numerical values for

all necessary matrix elements in the calculation of the

sixth order energy correction for the linear chain with

spin one-half. Substitution into Eq. (A12) yields

E(Sa)6  = 0, in agreement with Walker.19
S=1/2, 40 =2Wakr 1



APPENDIX B

In this Appendix, we show explicitly that, for the

linear chain with spin one-half,

<D3 UUI 2 , Ul1, 2>R = 0, (BI)

and

<D2 UDUl 2 ,Ul, 2 >R = 0

Eqs. (Bi) and (B2) represent typical terms resulting

from Eq. (53), Chapter III, which have denominators which

vanish for this case. It should be realized that the

vanishing of the denominators, coupled with the vanishing

of the matrix elements, does not indicate an indeterminacy

in the evaluation of the corresponding term in Eq. (53).

In the course of computing succeeding orders of the per-

turbation correction, matrix elements like Eqso (Bl) and

(B2) appear with finite coefficients early in the series.

It is at this point that their null property should be

taken into account, and not after the sum of all possible

coefficients throughout the perturbation series has been

determined for a given matrix element under the assumption

that it is not null.
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We consider first the form of <D3 UUI 2 ,U, 2 >R.

<D 3 U~l 2 :1212> 1212

<D3UU12' U' 2>R = 6<Ql2'><rl,2> + <R+Rll,22'> (B3)

+ + +VII
+R12,R1,2> + Vl22,>,

which is determined by means of the commutators of D and

U defined in Chapter III, Section A, Part 2. The sub-

scripts refer to the linking of operators discussed in

Appendix A. Substitution of the commutators with their

expressions in terms of spin operators, and the subsequent

evaluation of these expressions, yields

<D3 UU6(1-a) 6 ( )26 (B4)

0

xl6(S(o)6 ({o-l)2 102 2 5•o 7x 16Sý)6 ro4' - 24(S(o1 5 0 o3
0 r

+ 6(S2o)4 10io2 + 27 0 - 27+ ((o 0 2  - 5k(S~o)3 + 9(SŽo)2J

which for S = 1/2, Y0 = 2, gives

<D3 UUl 2 ,UlI 2 >R = 0 (B5)
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For the form of <D2UDUl 2 ,Ul, 2 >R, we find upon apply-

ing the commutation relations between D and U,

<D2 UDU l2 'Uli2 >R = 2<QI2'><Q1'2> + <R+RI 1 2 2 '>, (B6)

which, upon replacement of the commutators with their

equivalents in terms of spin operators and subsequent

evaluation thereof, yields

<D UDUI 2 'Ul' 2 >R 2 a 6 (B•)

* 7(SýO 6MO-)F - 72(Sý() 5

+ (S0) 4 16YO 2 + 182ro -18 - 8(S ++ - 8(S2 o13 + (S•o)2•

Substitution of S = 1/2, 0 - 2 into Eq. (By) then yields

the predicted result,

<D2UDUI 2 'UI' 2>R (B8)

12t~l2>R 0



APPENDIX C

In this Appendix, we will compute the fourth order

perturbation correction to the partition function as it

is expressed in Eq. (103), Chapter IV. The computation

is not carried out to the point of providing a numerical

correction, expressed as a function of spin and lattice,

but only so far as to show the validity of relationships

such as Eq. (113) and Eq. (114) to fourth order. The

fourth order perturbation correction is given by the non-

vanishing elements of

N IZ <nn 1n 2j i• exp (-AE) dE (Cl)

n n, +n 2=n

x.(E 1 ) 1 (D+U) n 1 - (D+U)

x ( E )0  E Ho (D+U)o(E Ho) E-(D+U)

p=O

Xr=oE -- I EH - 1 nnl2>

The non-vanishing elements of Eq. (Cl) are, of course,

those in which the number of D operators is equal to the
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number of U operators. These terms correspond to the fol-

lowing ordering of the D and U operators,

DUDU, (C2)

UDUD,

DUUD,

UDDU,

DDUU,

and UUDDo

Evaluation of the corresponding six integrals obtained

from Eq. (CI), and an expansion of each in powers of exp

(-/ý/2), yields the following result for the sum of con-

tributions from all six integrals, plus the zeroth and

second order corrections of Eq. (110).

Tr[expT(QH)]to fourth order (C3)

= exp(-AEOE)1 + <OIOAIO> + Z <2,nln2 10BI2,nln 2 >
nl1+n 2=2

+ z <4 , nln21 Oc 14. nln2>
n 1 +nt2n=4n 1

+ exp[-ý(Eo+A/2){N + n1= n n< 0 l, nn>nl1+n 2 1 nln21 0All1 n2>

+ • <3, nln2 IOBI 3,nln2>

n1 +n2=3

+ - <5,n 1n 2 I00 5,nCn 2 >).+ .
n*+n 2=5
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where

[A "D---t-U + 2D7Aj1 1 )UD--J--U (C4t)

1 j 2 (A, 2:1 1 2,(05)

-~ ~ 1 2D +D-:: - + T h~.TT L..

+ e 1 2 ~l7UDT&;2
7 UD1 ,+__

1 1 1 1 1 05)T~

The pr2riso h n prtr lo h

rollowing 6ý U reai+hp to4+ -bea+ usdtosml yE. 0)
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< ~2, n n 0,312, n nri> <0B 10%I>, (07)
n1 +n 2-

1 2

<3 n 1B3, = <1,n 1 n2102J 11,1 1 in 2>,n 1+n2=3 n 1+n 2 =1 (q

n I+n 2=5 n 1+n 2=1 (10)

where

(&+,) 2 (& 1) +1 (~ 2 (&+ )2 (cii)

+1 2UD (Fk ±I)--!-U +1[7

0C, n (012)

For the terms proportional to exp (-/ýE0 ), the sim-

plified expression for the partition function to fourth

order is

exp(7cE 0 )ý{1 +0[<OlnjID-61UJO> -<OjI~1±I)Un(-:tLI) j (03
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+ A'/ 2 <0f (AIUes )Uf O>]

We see that Eq. (C13) represents an expansion to

fourth order, i.e., through all terms involving at least

two D and two U operators, of the following exponential,

<0 I exp [ -ý<E0 -DT2Jý17U+D 7&)(jj)UD-- 2--U (014*)

+ID_,__UL_+!I + ..)~O>.

In addition, the expectation value of -i//6 times the

argument forms precisely the same perturbation series for

the ground state as was determined in Chapter III. This

may be seen by simply utilizing the binomial theorem to

obtain

1 1 2 < <DI 2U>
<01 ) O> = a 2DAU> + (C15)

<0) 1 1UU1 <DU>2 3<DU><DIU>
( (+I) (:[) "2a A3

+ 6<DU><DI
2 U>

A5



139

01< D 1 (f 1 U> <D2U2> <D2UIU> <D2IU2>
<fl 2 V > Y<D 2 ° 2&3 2 !1

+ <D21UIU> <D212U2> +<D2IU2U>+ .ýA5 8&5 2A5

If Eq. (C15) is substituted into the argument of

Eq. (014), all the terms of the ground state perturbation

series of Eq. (32), Chapter III, in which there are only

two D and two U operators or less are accounted for. Thus

Eq. (113), Chapter IV, is valid through the fourth order

of the perturbation.

To show Eq. (114) through fourth order, we take the

terms of Eq. (C3) which are proportional to

exp [(-((Eo+A/2)], and introduce the simplifications

indicated in Eq.% (C9-12). We get

exp [-j(E 0 +/2)]{N +<•"<l,n 1 n 2 1  (C16)

1 1-
9C [ DE+yU D Ut____ 7 7ý

+ ] )( 2Z•+)U ](+I lnln 2 >

+ D 2 /2 D<l-- nn 2 j 11 1 n [ nU> U]Ilnln 2 >

nl1+n2 =l (ý1D 6-7
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Examinationa of E~q. (02.6) shows that, to fourth order,

it represents the expansion indicated in Eq. ('112.4).



OFFICE OF NAVAL RESEARCH

PHYSICS BRANCH

TECHNICAL REPORTS DISTRIBUTION LIST

FOR

A. Government Distribution

lý Department of Defense

Office of the Director of Defense
Defense Research and Engineering 2 copies
Information Office Library Branch
Pentagon Building
Washington 25, DoC.

Armed Services Technical Information Agency
Arlington Hall Station 5 copies
ATTN: TIPCR
Arlington 12, Virginia

2. Department of the Navy

Chief, Bureau of Weapons
Technical Library
Navy Department
Washington 25,D.C.C

Chief, Bureau of Ships
Code 300, Technical Library
Navy Department
Washington 25, D.C.

Chief of Naval Research
Office of Naval Research 3 -e

ATTN: Physics Branch
Washington 25, D.C,

Director
U. S. Naval Research Laboratory
Technical Information Officer 6 copies
Code 2000, Code 2021
Washington 25, DMC.

Commanding Officer
Office of Naval Research Branch Office
495 Summer Street
Boston 10, Massachusetts

Commanding Officer
Office of Na-va Rfesearch Branch Office
1030 East Green Street 2 copies
Pasadena 1, California



Commanding Office
Office of Naval Research Branch Office
346 Broadway
New York 13, New York

Contract Administrator
Southeastern Area
Office of Naval Research
George Washington University
2110 "G" Street, N.W.
Washington 7, DXC.

Commanding Officer
Office of Naval Research Branch Office
86 East Randolph Street
Chicago 1, Illinois

Commanding Officer
Office of Naval Research Branch Office (Dr. Ed Edelsack, 1 copy)
1000 Geary Street

San Francisco 9, California

Commanding Office
Officer of Naval Research Branch Office 2 copies
Navy No. 100 Box 39 Fleet Post Office
New York, New York

U. S. Navy Radiological Defense Center
San Francisco, California

Librarian
U.S. Naval Post Graduate School
Monterey, California

Commanding Officer
U.S. Naval War College
Newport, Rhode Island

Director
Research Department
UoS. Naval Ordnance Laboratory
White Oak, Silver Spring, Maryland

Commanding Officer
Physics Division
U.S. Naval Ordnance Test Station
Inyokern, China Lake, California

Commanding Officer
U.S. Naval Ordnance Laboratory
Corona, California

ComrL.nding Officer
Office of Ný vJl fleccrch 13rnch Office (•)
1030 E. Green Street
Ptzideria 1, C~lifornic



3. Department of the Air Force

Commanding Officer
Wright Air Development Division

Air Research arnd Develppment Command AFSWC, SWRP

U,S. Air Force Kirkland Air Force Base

Wright*Patterson Air Force Base New Mexico

DaytonOhio

Headquarters
Air Force Research Division (ARDC) (USAF)
Geophysics Research Directorate
Laurence G. Hanscom Field

Bedford, Massachusetts

4. Department of the Army

Commanding Officer
U. S. Army Engineering Research and

Development laboratories
Fort Belvoir, Virginia
ATI`71 Technical Intelligence Branch

U.S. Army Research Office
Box CM, 'luke Station 2 copies

Durham, North Carolina

U.S. Army Signal Engineering Laboratory

Fort Monmouth, New Jersey
ATTN: Technical Information Officer 2 copies

Dr. J.L. Martin
Watertown Arsenal
Watertown 72, Massachusetts

5. Department of Commerce

Director
i•ational Bureau of Standards

Washington 25, D.C.

Director
National Bureau of Standards

Boulder7 Colorado

6. Other Agencies

Advanced Research Projects Agency

The Pentagon
Room 3E157
Washington 25, D6C*



National Aeronautics and Space Administration
1.520 "H" Street, N.W.
Washington 25, D.C.

National Research Council
Division of physical Sciences
National Academy of Sciences
Washington 25, D,,C.

Director
National Science Foundation
Washington 25, D.C.

U.S. Atomic Bnergy Commission
Technical Information Service
P.O. Box 62
Oak Ridge, Tennessee

Defense Atomic Support Agency
Sandia Base, New Mexico.

Defense Atomic Support Agency
Washington 25, D.C.


